scholarly journals 112 PRESIDEDRESS SOIL NITRATE TEST FOR SWEET CORN

HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 444c-444
Author(s):  
J. R. Heckman ◽  
D. J. Prostak ◽  
W. T. Hlubik

The presidedress soil nitrate test (PSNT) is an in-season soil test that evaluates the N supplying capacity of soil before side dressing to adjust N application rates. Increasing acceptance of this soil test among field corn growers in New Jersey has shown it to be an effective practice. Nitrogen application rates were reduced by an average of 45 kg-1 ha without loss of crop yield. Field calibration research to extend use of the PSNT to sweet corn has the potential to improve N fertilizer recommendations for this crop. A critical concentration of 25 mg kg-1 NO3-N in the surface 30 cm of soil is generally considered adequate for field corn. Certain crop features of sweet corn (earlier harvest, smaller plant size and population) suggested that the critical NO2-N level might be lower than for field corn while market quality suggested that it might be a higher value. Results from 40 sweet corn field calibration sites in New Jersey indicate that the PSNT critical soil NO3-N concentration may be greater for sweet corn than field corn. A preliminary critical level of 30 mg kg-1 NO3-N in the surface 30 cm of soil is suggested for use of the PSNT on sweet corn. Further research is being conducted to improve sidedress N recommendations based on the PSNT.

2010 ◽  
Vol 20 (2) ◽  
pp. 389-394
Author(s):  
Timothy K. Broschat ◽  
Kimberly Anne Moore

The roots of container-grown ornamental plants primarily are concentrated within the original container substrate root ball during the establishment period following transplanting into the landscape. Plants growing in container substrates containing pine bark or peatmoss have higher nitrogen (N) requirements than in most landscape soils due to microbial immobilization of N by these organic components. However, use of high-N fertilizers, such as those used in container production of ornamentals, can cause imbalances with potassium (K) and magnesium (Mg) when used on palms in sandy landscape soils. Areca palm (Dypsis lutescens) and chinese hibiscus (Hibiscus rosa-sinensis ‘President’) that had been growing in containers were transplanted into a landscape soil to determine if high N fertilization during the establishment period could accelerate the rate of establishment without exacerbating K and Mg deficiencies. Although plants of both species had the darkest green color and largest size when continuously fertilized with high N fertilizer, this treatment did induce Mg deficiency in both species. Plant size and color for both species were highly correlated with cumulative N application rates, but also with initial N application rates, suggesting that high N fertilization during the first 6 months affected plant quality at 12 and 24 months after planting, even if high N fertilization was discontinued. However, continued use of a moderate N landscape palm maintenance fertilizer ultimately produced areca palm plants as good as those receiving high N during the establishment period.


HortScience ◽  
1995 ◽  
Vol 30 (5) ◽  
pp. 1033-1036 ◽  
Author(s):  
J.R. Heckman ◽  
W.T. Hlubik ◽  
D.J. Prostak ◽  
J.W. Paterson

Research was conducted with sweet corn (Zea mays L.) to evaluate the presidedress soil NO3 test (PSNT) originally developed for use on field corn on a wide range of New Jersey soils. Soil NO3-N concentrations reflected differences in N availability due to manure or preplant N application. The relationship between soil NO3-N concentration and relative yield of marketable ears was examined using Cate–Nelson analysis to define the PSNT critical level. Soil NO3-N concentrations >25 mg·kg–1 were associated with relative yields at ≥92%. The success rate for the PSNT critical level was 85% for predicting whether sidedress N was needed. Including NH4-N in the soil analysis did not improve the accuracy of the soil test for predicting whether sidedress N was needed. Although the PSNT is quite accurate in identifying N-sufficient sites, it appears to offer only limited guidance in making N-fertilizer rate predictions. The PSNT is most useful on manured soils, which frequently have sufficient N. The test likely will help decrease the practice of applying “insurance” fertilizer N and the ensuing potential for NO3 pollution of the environment.


HortScience ◽  
1990 ◽  
Vol 25 (12) ◽  
pp. 1612-1613 ◽  
Author(s):  
Deborah A. Tolman ◽  
Alexander X. Niemiera ◽  
Robert D. Wright

Seedlings of 30-, 35, 40-, -45, and 50-day-old marigold (Tagetes erecta Big. `Inca Gold') in 500-ml plastic pots containing a 1 peat: 1 perlite (v/v) medium were treated with several fertilizer levels (N at 20, 50, 80, and 110 mg·liter-1); solution nutrient levels in the medium were determined 6 hours later. Older/larger container-grown plants absorbed more N, P, and K from the medium solution than younger/smaller plants. Also, older plants (>40 days) absorbed at least 88% of the solution N regardless of N treatment. Nitrogen absorption, regardless of plant age, increased as N application rates increased. The latter result implies that even though total N absorption increases with plant age/size, nutrient levels in the medium solution for optimal growth and nutrient uptake may be similar regardless of plant size.


2009 ◽  
Vol 45 (3) ◽  
pp. 275-286 ◽  
Author(s):  
LIMEI ZHAO ◽  
LIANGHUAN WU ◽  
YONGSHAN LI ◽  
XINGHUA LU ◽  
DEFENG ZHU ◽  
...  

SUMMARYField experiments were conducted in 2005 and 2006 to investigate the impacts of alternative rice cultivation systems on grain yield, water productivity, N uptake and N use efficiency (ANUE, agronomic N use efficiency; PFP, partial factor productivity of applied N). The trials compared the practices used with the system of rice intensification (SRI) and traditional flooding (TF). The effects of different N application rates (0, 80, 160 and 240 kg ha−1) and of N rates interacting with the cultivation system were also evaluated. Resulting grain yields with SRI ranged from 5.6 to 7.3 t ha−1, and from 4.1 to 6.4 t ha−1 under TF management. On average, grain yields under SRI were 21% higher in 2005 and 22% higher in 2006 than with TF. Compared with TF, SRI plots had higher harvest index across four fertilizer N rates in both years. However, there was no significance difference in above-ground biomass between two cultivation systems in either year. ANUE was increased significantly under SRI at 80 kg N ha−1 compared with TF, while at higher N application rates, ANUE with SRI was significantly lower than TF. Compared with TF, PFP under SRI was higher across all four N rates in both years, although the difference at 240 kg N ha−1 was not significant. As N rate increased, the ANUE and PFP under both SRI and TF significantly decreased. Reduction in irrigation water use with SRI was 40% in 2005 and 47% in 2006, and water use efficiency, both total and from irrigation, were significantly increased compared to TF. With both SRI and TF, the highest N application was associated with decreases in grain yield, N use efficiency and water use efficiency. This is an important finding given current debates whether N application rates in China are above the optimum, especially considering consequences for soil and water resources. Cultivation system, N rates and their interactions all produced significant differences in this study. Results confirmed that optimizing fertilizer N application rates under SRI is important to increase yield, N use efficiency and water use efficiency.


Author(s):  
Fen Gao ◽  
Yuanhong Chen ◽  
SeaRa Lim ◽  
Allen Xue ◽  
Bao-Luo Ma

Effective nitrogen (N) management strategies are important for ensuring a balance between optimizing plant growth and minimizing disease damage. A field experiment was conducted for three years to (i) assess the effects of N fertilizer application on the growth and seed yield of canola, and severities of Sclerotinia stem rot (SSR), and (ii) determine a reasonable N-rate for optimizing plant growth and minimizing the loss from SSR in eastern Canada. The experiment was designed with factorial combinations of eight N treatments and two canola hybrids. All N-treatments reduced canola emergence with increasing preplant N application rates above 100 kg ha–1, but had a positive impact on plant height, fresh weight, dry weight and seed yield. The development of SSR showed differential responses to N application rates. Of all the treatments, the split application (50 kg N ha–1 at preplant plus 100 kg N ha–1 side-dressed at the 6-leaf stage) increased canola growth, and often produced the highest or similar seed yields to those of equivalent N rate applied as preplant. At the 150 kg ha–1 N rate, no severe development of SSR was observed in either preplant-only or split application. Overall, this study demonstrates that the split-N management strategy (50+100 kg ha–1) maintained a balance between enhancing plant growth and mitigating the negative impacts of SSR on canola.


1976 ◽  
Vol 87 (2) ◽  
pp. 293-296 ◽  
Author(s):  
A. Gupta ◽  
M. C. Saxena

SummaryLeaf samples were collected, at weekly intervals, throughout the growing season, from potato (Solanum tuberosumL.) plants supplied with varying amounts of nitrogen (0, 60, 120, 180 and 240 kg N/ha) and analysed for total N. Application of nitrogen increased the N concentration in the green leaves at all stages of growth. There was a significant curvilinear relationship between the final tuber yield and the total N concentration in the leaves at 48–90 days after planting in 1968–9 and at 79–107 days after planting in 1969–70. The N concentration at 70–90 days after planting was consistently related to the final tuber yield in both years. Thus this period was ideal for assessing the nitrogen status of potato plants. The critical concentration of total nitrogen generally decreased with advance in age. It ranged from 4·65% at 76 days to 3·30% at 90 days during 1968–9, whereas in 1969–70 it ranged from 4·20% at 79 days to 3·80% at 93 days. During the period from 83 to 86 days the critical percentage was around 3·6% in both the years.


2007 ◽  
Vol 64 (2) ◽  
pp. 181-186 ◽  
Author(s):  
Kipling Shane Balkcom ◽  
Charles Wesley Wood ◽  
James Fredrick Adams ◽  
Bernard Meso

Leguminous winter cover crops have been utilized in conservation systems to partially meet nitrogen (N) requirements of succeeding summer cash crops, but the potential of summer legumes to reduce N requirements of a winter annual grass, used as a cover crop, has not been extensively examined. This study assessed the N contribution of peanut (Arachis hypogaea L.) residues to a subsequent rye (Secale cereale L.) cover crop grown in a conservation system on a Dothan sandy loam (fine-loamy, kaolinitic, thermic Plinthic Kandiudults) at Headland, AL USA during the 2003-2005 growing seasons. Treatments were arranged in a split plot design, with main plots of peanut residue retained or removed from the soil surface, and subplots as N application rates (0, 34, 67 and 101 kg ha-1) applied in the fall. Peanut residue had minimal to no effect on rye biomass yields, N content, carbon (C) /N ratio, or N, P, K, Ca and Zn uptake. Additional N increased rye biomass yield, and N, P, K, Ca, and Zn uptakes. Peanut residue does not contribute significant amounts of N to a rye cover crop grown as part of a conservation system, but retaining peanut residue on the soil surface could protect the soil from erosion early in the fall and winter before a rye cover crop grows sufficiently to protect the typically degraded southeastern USA soils.


2016 ◽  
Vol 29 (1) ◽  
pp. 133-142
Author(s):  
NÍDIA RAQUEL COSTA ◽  
MARCELO ANDREOTTI ◽  
KENY SAMEJIMA MASCARENHAS LOPES ◽  
KAZUO LEONARDO ALMEIDA YOKOBATAKE ◽  
CÉSAR GUSTAVO DA ROCHA LIMA

ABSTRACT: An experiment was conducted during the years 2009 and 2010 to evaluate the effects of Urochloa forage straw and nitrogen fertilization on soil properties, nutritional foliar content, index of foliar chlorophyll (IFC) values, production components, and grains yields of winter bean (Phaseolus vulgaris 'Pérola') in the Cerrado lowlands region of Brazil. The treatments consisted of planting bean crops under straw of Urochloa brizantha 'Xaraés' and Urochloa ruziziensis, fertilized with urea-sourced N (0, 50, 100, 150, and 200 kg N ha-1). The experimental design was randomized blocks with four replications, and a factorial scheme of 2 × 5. The greater yield of U. brizantha dry matter in the two years of evaluation increased bean leaf nutrient levels. The nutritional increase with increasing N application rates showed that the straw produced by the forages had a positive effect on bean nutrition. The grain yield was satisfactory but was not affected by the forage species nor by changes in the N application rates. The Urochloa straw increased the soil organic matter (SOM), Ca, and Mg content in both evaluated years, affected the decomposition and mineralization of organic residues, and ensured the proper development of the bean plants.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1945
Author(s):  
Tiare Silvasy ◽  
Amjad A. Ahmad ◽  
Koon-Hui Wang ◽  
Theodore J. K. Radovich

Using local resources and minimizing environmental impacts are two important components of sustainable agriculture. Meat and bone meal (MBM), tankage, is a locally produced organic fertilizer. This study was conducted to investigate the response of sweet corn (Zea mays L. var. saccharata Stuart.) and soil water nitrate (NO3-N) concentration to MBM application at two locations, Waimānalo and Poamoho, on the island of O’ahu. The objectives were to determine effects of six application rates (0, 112, 224, 336, 448 and 672 kg N ha−1) and two application timings (preplant and split application) on: (1) sweet corn growth, yield, and quality, and (2) soil water nitrate concentration within and below the root zone. The split-plot was designed as four replicates randomly arranged in a complete block. Plant growth of roots and shoots, yield, and relative leaf chlorophyll content of sweet corn increased with increasing application rates of MBM in both locations. At Poamoho, yield was 13.6% greater in preplant versus split application. Nitrate-nitrogen losses were reduced by 20% at Waimānalo and 40% at Poamoho when MBM was applied in split applications. These findings suggest that MBM is an effective nitrogen source for sweet corn and a split application of MBM may reduce the potential for pollution.


Sign in / Sign up

Export Citation Format

Share Document