scholarly journals THE EFFECTS OF WATER STRESS ON PLANT WATER STATUS AND GROWTH OF SELECTED SWEETPOTATO GENOTYPES

HortScience ◽  
1991 ◽  
Vol 26 (5) ◽  
pp. 490f-490
Author(s):  
Thammasak Thongket ◽  
James O. Garner

Responses of four sweetpotato genotypes (`Centennial', `Travis', `Vardaman' and `MS 21-2') to water stress were studied. Two irrigation regimes (irrigation vs non-irrigation) were imposed on five-week old cuttings grown in a greenhouse environment. Transpiration and leaf diffusive resistance (LDR) were measured with a steady state porometer and mid-day total leaf water potentials were determined with a thermocouple psychrometer. Leaf growth was inhibited earlier than root growth. Water stress caused a reduction of leaf size in Centennial and in leaf number in the other three. Storage root number of Vardaman was not inhibited by limited soil moisture but development of storage roots was retarded by water stress. Total growth under non-irrigation of MS 21-2 was inhibited more than Vardaman. Mid-day leaf water potential did not show promise as a good indicator of water status. Genotypic differences in the water stress sensitivity as measured by LDR, were observed.

1992 ◽  
Vol 43 (3) ◽  
pp. 659 ◽  
Author(s):  
L Guobin ◽  
DR Kemp ◽  
GB Liu

The effect of water stress during summer and recovery after rain on herbage accumulation, leaf growth components, stomatal conductance and leaf water relations of white clover (Trifolium repens cv. Haifa) and phalaris (Phalaris aquatica cv. Australian Commercial) was studied in an established mixed pasture under dryland (dry) or irrigated (wet) conditions. Soil water deficits under dry conditions reached 150 mm and soil water potentials in the top 20 cm declined to nearly -2 MPa after 50 days of dry weather. Water stress severely restricted growth of both species but then after rain fell, white clover growth rates exceeded those of phalaris. Under irrigation, white clover produced twice the herbage mass of phalaris but under dry conditions herbage production was similar from both species. Leaf appearance rates per tiller or stolon were slightly higher for white clover than phalaris but were reduced by 20% under water stress in both species. Leaf or petiole extension rates were more sensitive to water stress than leaf appearance rates and declined by 75% in phalaris and 90% in white clover. The ratio of leaf or petiole extension rates on dry/wet treatments was similar for both species in relation to leaf relative water contents, but in relation to leaf water potentials phalaris maintained higher leaf growth rates. Phalaris maintained a higher leaf relative water content in relation to leaf water potentials than did white clover and also maintained higher leaf water potentials in relation to the soil water potential in the top 20 cm. Stomata1 conductances for both species declined by 80-90% with increasing water stress, and both species showed similar stomatal responses to bulk leaf water potentials and leaf relative water contents. It is suggested that the poorer performance of white clover under water stress may be due principally to a shallower root system than phalaris and not due to any underlying major physiological differences. The white clover cultivar used in this study came from the mediterranean region and showed some different responses to water stress than previously published evidence on white clover. This suggests genetic variation in responses to water stress may exist within white clover. To maintain white clover in a pasture under dry conditions it is suggested that grazing practices aim to retain a high proportion of growing points.


2015 ◽  
Vol 50 (7) ◽  
pp. 534-540 ◽  
Author(s):  
Cleber Morais Guimarães ◽  
Luís Fernando Stone ◽  
Adriano Pereira de Castro ◽  
Odilon Peixoto de Morais Júnior

Abstract: The objective of this work was to evaluate the feasibility of using physiological parameters for water deficit tolerance, as an auxiliary method for selection of upland rice genotypes. Two experiments - with or without water deficit - were carried out in Porangatu, in the state of Goiás, Brazil; the water deficit experiment received about half of irrigation that was applied to the well-watered experiment. Four genotypes with different tolerance levels to water stress were evaluated. The UPLRI 7, B6144F-MR-6-0-0, and IR80312-6-B-3-2-B genotypes, under water stress conditions, during the day, showed lower stomatal diffusive resistance, higher leaf water potential, and lower leaf temperature than the control. These genotypes showed the highest grain yields under water stress conditions, which were 534, 601, and 636 kg ha-1, respectively, and did not differ significantly among them. They also showed lower drought susceptibility index than the other genotypes. 'BRS Soberana' (susceptible control) was totally unproductive under drought conditions. Leaf temperature is a easy-read parameter correlated to plant-water status, viable for selecting rice genotypes for water deficit tolerance.


1984 ◽  
Vol 102 (3) ◽  
pp. 687-693 ◽  
Author(s):  
Alejandra Paez ◽  
H. Hellmers ◽  
B. R. Strain

SummaryIf atmospheric carbon dioxide concentration continues to increase, plant growth and crop yield could be affected. New Yorker and Better Boy cultivars of tomato (Lycopersicon esculentum) were used to investigate possible intraspecific variation in the response of crop species to increased CO2. Because precipitation and temperature are predicted to change with the increasing atmospheric CO2 concentration, the response of the two cultivars to the interaction between CO2 and water stress was also examined. Seeds of the two cultivars were germinated and grown under controlled environmental conditions, in either 350 or 675 μ1 CO2/1.The plant water status of the two cultivars was inherently different but was little affected by the CO2 concentration when the plants were well watered. When water was withheld for 5 days the total leaf water potential and osmotic potential decreased in both CO2 treatments but less rapidly in high CO2 than in low. Under low CO2 total leaf water potential decreased to a lower value than osmotic potential. The differences were due, at least in part, to the reduced stomatal conductance and transpiration rate under high CO2.Increased CO2 ameliorated the detrimental effects of drought stress on plant growth. The results indicate that increased CO2 could differentially affect the relative drought resistance of species cultivars.


1976 ◽  
Vol 3 (2) ◽  
pp. 229 ◽  
Author(s):  
RD Graham

Leaf water potential, diffusive resistance, relative water content, weekly water use, yields and head bending were measured on wheat plants subjected to four copper levels (0, 0.4, 0.8 or 4.0 mg Cu per pot) and two water levels (6 or 12% soil water content). Severe copper deficiency (Cu 0) resulted in no grain yield, wilting, increased leaf diffusive resistance and, at the same time, increased leaf water potential relative to plants receiving 4.0 mg Cu (Cu 4.0). Water supply effects were observed but there was no interaction between copper and water treatments. Mild copper deficiency (Cu 0.4, Cu 0.8) resulted in small yield decreases, relative to Cu 4.0, and increased head bending towards maturity. It is concluded that wilting, characteristic of copper-deficient plants, is due to structural weakness (decreased lignification) and not to the water status of the plants; also, increased leaf diffusive resistance is due to a specific effect of copper deficiency on guard cells and not to decreased leaf water potential.


1989 ◽  
Vol 16 (6) ◽  
pp. 549 ◽  
Author(s):  
SL Steinberg ◽  
MJ Mcfarland ◽  
JC Miller

A gradation, that reflects the maturity of the leaves, exists in the leaf water, osmotic and turgor potential and stomatal conductance of leaves along current and 1-year-old branches of peach. Predawn leaf water potentials of immature folded leaves were approximately 0.24 MPa lower than mature leaves under both well-watered and dry conditions. During the daytime the leaf water potential of immature leaves reflected the water potential produced by water flux for transpiration. In well- watered trees, mature and immature unfolded leaves had a solute potential at least 0.5 MPa lower than immature folded leaves, resulting in a turgor potential that was approximately 0.8 MPa higher. The turgor requirement for growth appeared to be much less than that maintained in mature leaves. As water stress developed and leaf water potentials decreased, the osmotic potential of immature folded leaves declined to the level found in mature leaves, thus maintaining turgor. In contrast, mature leaves showed little evidence of turgor maintenance. Stomatal conductance was lower in immature leaves than in fully mature leaves. With the onset of water stress, conductance of mature leaves declined to a level near that of immature leaves. Loss of turgor in mature leaves may be a major factor in early stomatal closure. It was concluded that osmotic adjustment played a role in maintenance of a leaf water status favorable for some growth in water-stressed immature peach leaves.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 682d-682
Author(s):  
James Q. Garner ◽  
Thammasak Thongket

Proline content, leaf water potential (LWP), and leaf diffusive resistance (LDR) were determined for eight sweetpotato genotypes underwater stress conditions. Changes in fatty acid compositions of leaf polar lipids were determined in two sweetpotato genotypes during declining soil moisture. Proline did not accumulate and LWP did not decrease until soil moisture dropped below 10%, but LDR increased as soil moisture decreased. Genotypic differences in proline accumulation and LWP were found. Changes in fatty acid compositions occurred more in glycolipids than in phospholipids. Fatty acid changes were more pronouned in genotype MS20-2 than in “Vardaman”


2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Jinyoung Yang ◽  
Richard C. Sicher ◽  
Moon S. Kim ◽  
Vangimalla R. Reddy

Three maize genotypes were grown in controlled environment chambers with ambient (38 Pa) or elevated (70 Pa) carbon dioxide and water stress treatments were initiated 17 days after sowing. Shoot dry weight of the drought tolerant hybrid in both CO2 treatments was 44 to 73% less than that of the intermediate and sensitive hybrids when seedlings were well watered. Decreased shoot and root dry weights of the tolerant maize hybrid due to drought were about one-half that of the other two hybrids. Genotypic differences were observed in decreases of soil water content, leaf water potential, net photosynthesis and stomatal conductance in response to drought. Eleven of 19 amino acids measured in this study increased, methionine was unchanged and alanine and aspartate decreased in response to drought in the ambient CO2 treatment. Increased amino acid levels under elevated CO2 were observed at the end of the experiment. Significant genotypic differences were detected for amino acid responses to drought. Effects of drought on all three genotypes were mitigated by CO2 enrichment. Decreased shoot growth likely improved the stress tolerance of a highly drought resistant maize hybrid by reducing moisture loss, improving soil moisture content and increasing leaf water potential.


2000 ◽  
Vol 27 (10) ◽  
pp. 941 ◽  
Author(s):  
John B. Passioura ◽  
Rana Munns

We subjected wheat and barley plants to rapid environmental changes, and monitored leaf elongation rates for several hours thereafter. Changes in light, humidity or salinity caused sudden rises (if the leaf water status rose) or falls (if the leaf water status fell) in leaf elongation rate, followed by a recovery phase that lasted 20–60 min. After a step change in light or humidity, the growing leaf eventually resumed its original elongation rate, although the shoot water status, as monitored by leaf thickness, differed markedly. Salinity, on the other hand, produced a persistent change in leaf elongation rate, which settled down to a lower steady rate after the transient response was over. To determine whether the sudden changes in leaf elongation rate were due to changes in leaf water relations, we kept shoots fully hydrated through the environmental changes by automatically pressurising the roots to maintain leaf xylem on the point of bleeding. This annulled the environmental effects on leaf water status, and thereby largely removed the changes in leaf elongation rate. The only exception was at the dark:light transition, when the leaf elongation rate of pressurised plants rose sharply (in contrast to that of unpressurised plants, which fell), then underwent damped oscillations before settling at about its initial value. The sudden excursions of leaf growth in unpressurised plants accompanying the environmental changes were undoubtedly due to changes in leaf water status. The subsequent, generally complete, return of the leaf elongation rate to its initial value within an hour, despite the persistent change in leaf water status, suggests that a control system is operating at a time scale of tens of minutes that eventually overrides, partially or completely, the rapid effects of changes in leaf water status.


Sign in / Sign up

Export Citation Format

Share Document