scholarly journals Biocompatibility of Wheat and Tomato in a Dual Culture Hydroponic System

HortScience ◽  
1994 ◽  
Vol 29 (10) ◽  
pp. 1164-1165 ◽  
Author(s):  
Andrew C. Schuerger ◽  
Philip D. Laible

`Yecora Rojo' Wheat (Triticum Aestivum L.) And `Florida Petite' Tomato (Lycoper-Sicon Esculentum Mill.) Plants Were Grown In Monocultured Or Intercropped Recirculating Hydroponic Systems To Determine Whether Plant Growth Or Yield Would Be Affected By Intercropping. Mean Fruit Weight Was Slightly Lower (12%) For Intercropped Than For Monocultured Tomato Plants. The Number Of Tillers Per Plant Was Slightly Lower (7%) For Wheat, And Grain Dry Weight Per Plant And Mean Seed Dry Weight Were Slightly Higher (14% And 15%, Respectively) For Intercropped Than For Monocultured Plants. A Lettuce Seedling Bioassay Showed No Evidence Of Allelopathic Compound Accumulation In Monocultured Or Intercropped Hydroponic Systems.

2020 ◽  
pp. 54-57
Author(s):  
Ah. A. Suliman ◽  
A. G. Abramov ◽  
A. A. Shalamova

Relevance and methods. This study aimed to improve fruit set and plant performance to increase tomato productivity by studying the effect of plant growth regulators on tomato plants. A specific experiment has been carried out to study the effect of plant growth regulators Hemo bles active substances (850 g/kg) Humic Acid with applied doses (250, 500 and 700 ppm) and Magictone active substances (5-12.5 g/kg) naphthalene acetic acid and naphthalene acetamide with applied doses (250, 500 and 700 ppm) on growth and physiological characteristics of tomato plants (Big Beef F1). The experimental design was a Complete Randomized Blocks Design. Both Hemo bles and Magictone were applied three times (spraying on plants at 30 DAP, spraying on plants at 60 DAP and spraying on plants 90 DAP).Results. The obtained results showed that, Applying Humic Acid “Ener-850” had the highest significant fruit weight (137 g) during the two seasons. Also using “Magictone” had the highest significant Flowers number (48.1), Fruits Number (35.1), Flower Clusters number in the plant (13.6) and Fruits Number (54.6. while (Humic Acid) improved tomato fruit’s quality during improve Dry weight (75.1 g) of Arial parts, Ascorbic Acid, level of Vitamin C and Carotenoids contents (4.82 mg 100 g-1). The results were analyzed using one-way analysis of variance (ANOVA) followed by Tukey’s HSD test with α = 0.05 with the help of MINITAB (v. 19.0) program.


2002 ◽  
Vol 68 (6) ◽  
pp. 2637-2643 ◽  
Author(s):  
Yoav Bashan ◽  
Luz E. de-Bashan

ABSTRACT Pseudomonas syringae pv. tomato, the causal agent of bacterial speck of tomato, and the plant growth-promoting bacterium Azospirillum brasilense were inoculated onto tomato plants, either alone, as a mixed culture, or consecutively. The population dynamics in the rhizosphere and foliage, the development of bacterial speck disease, and their effects on plant growth were monitored. When inoculated onto separate plants, the A. brasilense population in the rhizosphere of tomato plants was 2 orders of magnitude greater than the population of P. syringae pv. tomato (107 versus 105 CFU/g [dry weight] of root). Under mist chamber conditions, the leaf population of P. syringae pv. tomato was 1 order of magnitude greater than that of A. brasilense (107 versus 106 CFU/g [dry weight] of leaf). Inoculation of seeds with a mixed culture of the two bacterial strains resulted in a reduction of the pathogen population in the rhizosphere, an increase in the A. brasilense population, the prevention of bacterial speck disease development, and improved plant growth. Inoculation of leaves with the mixed bacterial culture under mist conditions significantly reduced the P. syringae pv. tomato population and significantly decreased disease severity. Challenge with P. syringae pv. tomato after A. brasilense was established in the leaves further reduced both the population of P. syringae pv. tomato and disease severity and significantly enhanced plant development. Both bacteria maintained a large population in the rhizosphere for 45 days when each was inoculated separately onto tomato seeds (105 to 106 CFU/g [dry weight] of root). However, P. syringae pv. tomato did not survive in the rhizosphere in the presence of A. brasilense. Foliar inoculation of A. brasilense after P. syringae pv. tomato was established on the leaves did not alleviate bacterial speck disease, and A. brasilense did not survive well in the phyllosphere under these conditions, even in a mist chamber. Several applications of a low concentration of buffered malic acid significantly enhanced the leaf population of A. brasilense (>108 CFU/g [dry weight] of leaf), decreased the population of P. syringae pv. tomato to almost undetectable levels, almost eliminated disease development, and improved plant growth to the level of uninoculated healthy control plants. Based on our results, we propose that A. brasilense be used in prevention programs to combat the foliar bacterial speck disease caused by P. syringae pv. tomato.


2013 ◽  
Vol 27 (3) ◽  
pp. 497-501 ◽  
Author(s):  
Aline M. Crespo ◽  
Andrew W. MacRae ◽  
Cristiane Alves ◽  
Tyler P. Jacoby ◽  
Rick O. Kelly

Fresh market tomato is an important and valuable crop in Florida, accounting for 630 million dollars farm-gate value, which was 45% of the total value of the U.S. crop in 2010. In order to maintain or increase its productivity, labeled herbicide alternatives to methyl bromide are important to limiting seed production of weeds emerging between the raised plasticulture beds. A study was conducted inside a greenhouse where carfentrazone was applied as a drench at 0.03125×, 0.0625×, 0.125×, 0.25×, 0.5×, 1×, 2×, 4×, and 8× and as a subsurface irrigation at 0.0625×, 0.125×, 0.25×, 0.5×, 1×, 2×, 4×, 8×, and 16× rates. The 1× rate equaled the maximum labeled rate of carfentrazone (35.1 g ai ha−1) that would be applied to an area of 0.360 m2. Both the drench and subsurface trials showed an increase in plant injury and reduced growth as the rate of carfentrazone increased. The drench trial, however, was observed to have higher visible injury and greater growth reduction (based on plant measurement) than the subsurface trial, when comparing similar rates. For the 1× rate of carfentrazone in the drench trial vs. the subsurface trial, injury was 66 and 24.5%, respectively. For the 1× rate the tomato plants had estimated growth, based on the curves fit for the data, of 4.8% vs. 39.9% for the drench and subsurface trials, respectively. The subsurface trial better represents what happens in the field when carfentrazone root uptake injury is observed since it is normally observed to be around 10% or less. This still leaves a level of concern; once a 10% injury level in the subsurface trial was estimated to have reduced tomato growth, fruit weight, and total shoot dry weight by 33, 15, and 9.5%, respectively.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1013D-1013
Author(s):  
Yan Chen ◽  
Donald Merhaut ◽  
J. Ole Becker

Nitrogen (N) fertilization is critical for successful production of cut flowers in a hydroponic system. In this study, two sunflower cultivars: single-stand `Mezzulah' and multi-stand `Golden Cheer' were grown under two N fertilization rates: 50 mg·L-1 and 100 mg·L-1 in a recirculating hydroponic system. At the same time, `Mezzulah' sunflowers were biologically stressed by exposing each plant to 2000 second-stage juveniles of the plant parasitic nematode Meloidogyne incognita, race 1. The experiment was conducted in May and repeated in Sept. 2004, and plant growth and flower quality between control and nematode-infested plants were compared at the two N rates. The two cultivars responded differently to fertilization treatments. With increasing N rate, the dry weight of `Mezzulah' increased, while that of `Golden Cheer' decreased. Flower size and harvest time were significantly different between the two cultivars. However, N had no effect on flower quality and harvest time. Flower quality rating suggests that quality cut stems can be obtained with 50 mg·L-1 N nutrient solution. Nematode egg count suggests that plants in the nematode treatment were successfully infested with Meloidogyne incognita, however, no significant root galling was observed, and plant growth and flower quality were not affected by nematode infestation.


1986 ◽  
Vol 13 (2) ◽  
pp. 86-89 ◽  
Author(s):  
S. Arrendell ◽  
J. C. Wynne ◽  
G. H. Elkan ◽  
T. J. Schneeweis

Abstract Improvement of the host contribution to nitrogen fixation has been proposed as a method of increasing nitrogen fixation. Significant variability and generally high broad-sense heritability estimates (.60 ± .27 to .82 ± .26 for nitrogenase activity and .53 ± .29 to .85 ± .26 for shoot dry weight) have been reported for F2-derived families from a cross between the Virginia (Arachis hypogaea L. ssp. hypogaea var. hypogaea) cultivar NC 6 and the Spanish (ssp. fastigiata Waldron vulgaris Harz.) breeding line 922, indicating selection for increased nigtogen fixation should be effective in this population. Lines from this population were chosen randomly from F2-derived families selected for high and low nitrogenase activity and high and low shoot dry weight after evaluation at three dates and two locations in each of 2 years (F5 and F6 generations). This study's objectives were to evaluate the N2-fixing ability of the selected lines and to evaluate the association between plant growth habit and N2 fixation. Twenty-four lines in each of the four selection groups and the parents, NC 6 and 922, were evaluated at two sampling dates and two locations. Mean nitrogenase activity of lines selected for increased nitrogenase activity was significantly greater than the mean of the lines selected for low nitrogenase activity. Improved nitrogenase activity was associated with increased fruit weight. The fruit weight mean of the group selected for increased fruit weight. The fruit weight mean of the group selected for increased nitrogenase activity was 39% greater than the mean of the group selected for low nitrogenase activity. Mean shoot dry weight of lines selected for increased shoot dry weight was significantly greater than the mean of the lines selected for low shoot dry weight; however, the fruit weight means of these two groups did not differ. It was hypothesized that selection for increased N2 fixation in a population derived from a cross between Virginia and Spanish types would eliminate genotypes with Spanish growth habit. Groups selected for high nitrogenase activity and for high shoot dry weight had longer and wider leaflets, longer cotyledonary laterals and greater main stem height than did their respective low selection groups. However, these traits chosen to characterize plant growth habit were inadequate in discriminating parental growth habits. Consequently, the data neither substantiated nor refuted the hypothesis.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
A. M. Nofal ◽  
Mohamed Abd El-Rahman ◽  
T. M. Abdelghany ◽  
Mahmoud Abd El-Mongy

Abstract Background Plant disease administration is difficult due to the soil-borne nature of the phytopathogens. Biological control of plant disease is a safe mode to avoid the problems related to fungal diseases that affect crops productivity. Results Twenty-three Trichoderma isolates were isolated from soil, surrounding healthy tomato roots from different regions in the Egyptian Governorate of Menoufia. Using a dual culture method to test the efficiency of Trichoderma isolates, the most effective isolate identified as Trichoderma atrovirde with percentage inhibition against Fusarium oxysporum f. sp. lycopersici (92.11%) and scanning electron microscope examination documented the mycoparasitic nature of T. atrovirde to F. oxysporum. Treatments with 10% filtrate T. atrovirde improved the growth aspects of tomato plants than the control plants or infected only, as well as the increase in phenol content (15.09 ug. g-1dry weight) and decreased disease incidence percentage (8%) than the plants infected only (60%). Conclusions This study clearly demonstrated that T. atrovirde had a significant inhibition against F. oxysporum. Greenhouse assays displayed the protective role of T. atrovirde inoculation directly against pathogen or indirectly related to the defense mechanism in the plant. So, this study recommends using T. atrovirde for biological control of wilt disease in tomato plants.


2021 ◽  
Vol 22 (6) ◽  
Author(s):  
Iis Nur Asyiah ◽  
JEKTI PRIHATIN ◽  
Ahda Dwi Hastuti ◽  
Sugeng Winarso ◽  
Lenny Widjayanthi ◽  
...  

Abstract. Asyiah IN, Prihatin J, Hastuti AD, Winarso S, Widjayanthi L, Nugroho D, Firmansyah K, Pradana AP. 2021. Cost-effective bacteria-based bionematicide formula to control root-knot nematode Meloidogyne spp. in tomato plants. Biodiversitas 22: 3256-3264. The root-knot nematode, Meloidogyne spp. can infect and cause loss production in various horticultural plants, including tomatoes. In the previous study, we found 3 endophytic bacteria isolates and 1 rhizobacterium isolate that could control several plant-parasitic nematodes. In this study, we formulated these bionematicide isolates with cheap and environmentally friendly organic materials. The formula was fortified using several organic matters, vitamin sources, protein sources, and sugar sources. The research was conducted in an experimental land with a history of severe root-knot nematode infection. The analysis showed that there were 63.7 J2 Meloidogyne spp. per 100 ml of soil on the experimental land. The application was given at a time interval of 2 weeks at the concentration of 0.5%, 1%, 1.5%, and 2%, with a dose of 100 ml per plant. As a negative control, the plant did not give any treatments, and as a positive control, the plant was given 5 g carbofuran per plant. The results revealed that treatment with 2% bionematicide formula concentration showed the best consistent result. This treatment increased canopy wet weight by 38.63% and root dry weight by 106.97% compared to negative control. The P4 treatment was also found effective to increase fruit weight by 33.61% and fruit diameter by 26.16% as compared to negative control. Increased plant growth in P4 treatment was closely related to the total of root-knot suppression and root damage intensity. In the P4 treatment, the total of root-knots and root damage intensities was 44.83% and 32.66%, respectively, compared to the negative control. This suppression also occurred in the nematode population and nematode eggs. In the P4 treatment, the total of Meloidogyne spp. J2 in soil and root was lower by 60.74% and 66.24%, respectively, compared to the negative control. A similar phenomenon also occurred in the total of eggs, which was 79.40% lower than the total of eggs in the negative control. This study provides the latest information about a cost-effective bacteria-based bionematicide formula, which is effective in suppressing Meloidogyne spp. infection in tomato, and promotes the growth and development tomato plant.


2020 ◽  
pp. 50-53
Author(s):  
Ah. A. Suliman ◽  
A. G. Abramov

Relevance. This study aimed to improve fruit set and plant performance to increase tomato productivity by studying the effect of plant growth regulators on tomato plants.Methods. A specific experiment has been carried out to study the effect of plant growth regulators Milagro (1% indol-3-butric acid) and Atlet active substances indol-3-butric acid and chloromequate chloride with applied doses (0.6 M/L, 1.0 M/L and 1.5 M/L) and (1.0, 1.5 and 2.0 M/L) on growth and physiological characteristics of plants (Big Beef F1). The experimental design was a Complete Randomized Blocks Design. Both Hemo bles was applied three times (spraying on plants at 30 DAP, spraying on plants at 60 DAP and spraying on plants 90 DAP).Results. The obtained results showed that, Applying Milagro (1% indol-3-butric acid) had the highest significant Plant height (80.13, 128.77 and 239 cm), number of leaves/plant (18.0, 34.67 and 44.3) and stem diameter (1.07, 1.5 and 2.03 cm), fruit weight (122.0 and 136 g), Flower Clusters number in the plant (4.64, 13.33 and 16.33) and Fruits Number (61.67, 62.0 and 67) Over the three years of study. The results were analyzed using one-way analysis of variance (ANOVA) followed by Tukey’s HSD test with α = 0.05 with the help of MINITAB (v. 19.0) program.


2020 ◽  
Vol 38 (3) ◽  
pp. 246-253
Author(s):  
Jing Yang ◽  
Biao Zhu ◽  
Xiaolei Ni ◽  
Yong He

ABSTRACT Nitrogen (N) strongly affects plant growth. However, little is known about the effects of the ammonium/nitrate ratio on pakchoi (Brassica rapa), especially its glucosinolates (GSs) contents which are involved in plant defense and many of them benefit to human health. The aim of this study was to evaluate the effects of a constant N supply (8 mM) but with five ammonium/nitrate ratios (namely 0/8 mM, 2/6 mM, 4/4 mM, 6/2 mM and 8/0 mM) on the growth of pakchoi in a hydroponic system in 2 years. In both years, a higher biomass (dry weight) was in the 4/4 and 2/6 ammonium/nitrate treatments (2.3 and 2.2-fold compared to 8/0, respectively), with no significant difference in biomass between these two treatments. The biomass then decreased with increasing proportions of ammonium in the N supply from more than 10 g/pot to below 5 g/pot. The N and sulfur contents were strongly affected in the sole nitrate or ammonium treatments, as were the contents of chlorophyll, lutein, and β-carotene. Most of the individual glucosinolates (GSs) detected in pakchoi showed the highest concentrations in the sole ammonium treatment. The ammonium/nitrate ratio also affected the types of GSs. The highest proportion of indolyl GSs and the lowest proportion of aromatic GSs were in the sole ammonium treatment. We concluded that a high ammonium level decreases the biomass but increases the GSs concentrations in pakchoi. Further studies are required to explore the difference in GSs metabolism among plants supplied with different ammonium/nitrate ratios.


Agronomy ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 137 ◽  
Author(s):  
Rosario Paolo Mauro ◽  
Michele Agnello ◽  
Miriam Distefano ◽  
Leo Sabatino ◽  
Alberto San Bautista Primo ◽  
...  

A greenhouse experiment was conducted to study the effects of the O2 root zone level and grafting on chlorophyll fluorescence, photosynthesis and growth of cherry tomato grown in a hydroponic system. Two O2 concentrations in the root zone, namely Ox (saturation level) and Ox- (2–3 mg L−1), were applied for 30 days on self-grafted cherry tomato Dreamer or grafted onto the hybrids Arnold, Beaufort, Maxifort and Top Pittam. Root hypoxia increased minimum fluorescence (by 10%) while it decreased variable fluorescence and the maximum quantum yield of PSII (up to 16 and 8%, respectively). Moreover, it reduced leaf photosynthesis, transpiration and stomatal conductance (by 12, 17 and 13%, respectively), whereas it increased leaf electrolyte leakage (by 2.1%). The graft combinations showed a different ability in buffering the effects of root hypoxia on plant growth and related components, and these differences were related to their root biomass. The minimum fluorescence was negatively correlated to plant growth, so it may be a useful indicator to select tolerant rootstocks to root hypoxia. Our results suggest the occurrence of both diffusive and metabolic constraints to tomato photosynthesis under root hypoxia, a condition that can be mitigated by selecting rootstocks with a more developed root system.


Sign in / Sign up

Export Citation Format

Share Document