scholarly journals Cost-effective bacteria-based bionematicide formula to control the root-knot nematode Meloidogyne spp. on tomato plants

2021 ◽  
Vol 22 (6) ◽  
Author(s):  
Iis Nur Asyiah ◽  
JEKTI PRIHATIN ◽  
Ahda Dwi Hastuti ◽  
Sugeng Winarso ◽  
Lenny Widjayanthi ◽  
...  

Abstract. Asyiah IN, Prihatin J, Hastuti AD, Winarso S, Widjayanthi L, Nugroho D, Firmansyah K, Pradana AP. 2021. Cost-effective bacteria-based bionematicide formula to control root-knot nematode Meloidogyne spp. in tomato plants. Biodiversitas 22: 3256-3264. The root-knot nematode, Meloidogyne spp. can infect and cause loss production in various horticultural plants, including tomatoes. In the previous study, we found 3 endophytic bacteria isolates and 1 rhizobacterium isolate that could control several plant-parasitic nematodes. In this study, we formulated these bionematicide isolates with cheap and environmentally friendly organic materials. The formula was fortified using several organic matters, vitamin sources, protein sources, and sugar sources. The research was conducted in an experimental land with a history of severe root-knot nematode infection. The analysis showed that there were 63.7 J2 Meloidogyne spp. per 100 ml of soil on the experimental land. The application was given at a time interval of 2 weeks at the concentration of 0.5%, 1%, 1.5%, and 2%, with a dose of 100 ml per plant. As a negative control, the plant did not give any treatments, and as a positive control, the plant was given 5 g carbofuran per plant. The results revealed that treatment with 2% bionematicide formula concentration showed the best consistent result. This treatment increased canopy wet weight by 38.63% and root dry weight by 106.97% compared to negative control. The P4 treatment was also found effective to increase fruit weight by 33.61% and fruit diameter by 26.16% as compared to negative control. Increased plant growth in P4 treatment was closely related to the total of root-knot suppression and root damage intensity. In the P4 treatment, the total of root-knots and root damage intensities was 44.83% and 32.66%, respectively, compared to the negative control. This suppression also occurred in the nematode population and nematode eggs. In the P4 treatment, the total of Meloidogyne spp. J2 in soil and root was lower by 60.74% and 66.24%, respectively, compared to the negative control. A similar phenomenon also occurred in the total of eggs, which was 79.40% lower than the total of eggs in the negative control. This study provides the latest information about a cost-effective bacteria-based bionematicide formula, which is effective in suppressing Meloidogyne spp. infection in tomato, and promotes the growth and development tomato plant.

2019 ◽  
Vol 8 (1) ◽  
pp. 23-28
Author(s):  
Mohamed S. Khalil ◽  
Abdulqawi A. A. Alqadasi

Currently, plant parasitic nematodes (PPN) especially root knot nematodes, Meloidogyne spp. have been found involved in the global losses of tomato crops. The most employed tactic for managing PPN in Africa is non-fumigant nematicides. Recently, in Egypt abamectin was recorded as a new tool to control PPN. Thus, two pot experiments were conducted to evaluate the potential of abamectin and certain non-fumigant nematicides namely; oxamyl and ethoprophos at two different formulations (granular and liquid) against southern root knot nematode (Meloidogyne incognita) on tomato plants under greenhouse conditions. Results revealed the granular formulations of ethoprophos and oxamyl, in addition to abamectin, showed the same significance (P≤0.05) in suppressing tomato soil population and root galls of M. incognita, during both experiments. However, liquid formulations of ethoprophos and oxamyl gave relatively less decreasing in soil population and root galls. On the other hand, all applied treatments improved plant growth criteria ranging from 36.92 to 126.44% in shoot dry weight and from 31.25 to 137.50% in root dry weight for both experiments.


2019 ◽  
Vol 21 (1) ◽  
pp. 1-8
Author(s):  
Eky Santo ◽  
Djamilah Djamilah ◽  
Entang Inoriah

[THE EFFECTIVENESS Jatropha curcas (L.) LEAF EXTRACTS IN INHIBIT ROOT-KNOT NEMATODE (Meloidogyne spp.) INJURIES ON TOMATO].  One of the main problems in tomato cultivation is the attack of root purse nematodes (Meloidogyne spp.). Some methods of controlling Meloidogyne spp. which can be done including using plants as vegetable nematicides. This study aims to get the concentration of Jatropha leaf extract which is effective in inhibiting the Meloidogyne spp attack on tomato plants. This study used 48 plants, 24 plants for observation 35 days after planting and 24 plants for observation until the age of 77 days after planting. This study used a Completely Randomized Design (CRD) with the treatment of Jatropha leaf extract concentrations (0%, 10%, 20%, 30%, 40%, 50%), and repeated four times. The results showed Jatropha curcas extract in inhibiting the attack of root purse nematodes (Meloidogyne spp.) can maintain plant height, fruit number, fruit weight, and plant stover wet weight 35 days after planting, but no significant effect on stover wet weight plants 77 days after planting and dry weight of plant stover 35 days after planting and 77 days after planting. The concentration of Jatropha leaf extract tends to increase the concentration, the smaller the rate of infection and the population of Meloidogyne spp on tomato plants. The concentration of Jatropha leaf extract 35% - 45% is the optimum concentration in inhibiting Meloidogyne spp. on tomato plants.


2019 ◽  
Vol 56 (1) ◽  
pp. 30-41 ◽  
Author(s):  
N. Thligene ◽  
G. N. Mezzapesa ◽  
D. Mondelli ◽  
A. Trani ◽  
P. Veronico ◽  
...  

SummaryPlant parasitic nematodes (PPN) are important pests of numerous agricultural crops especially vegetables, able to cause remarkable yield losses correlated to soil nematode population densities at sowing or transplant. The concern on environmental risks, stemming from the use of chemical pesticides acting as nematicides, compels to their replacement with more sustainable pest control strategies. To verify the effect of aqueous extracts of the agro-industry waste coffee silverskin (CS) and brewers’ spent grain (BSG) on the widespread root-knot nematode Meloidogyne incognita, and on the physiology of tomato plants, a pot experiment was carried out in a glasshouse at 25 ± 2 °C. The possible phytotoxicity of CS and BSG extracts was assessed on garden cress seeds. Tomato plants (landrace of Apulia Region) were transplanted in an artificial nematode infested soil with an initial population density of 3.17 eggs and juveniles/mL soil. CS and BSG were applied at rates of 50 and 100 % (1L/pot). Untreated and Fenamiphos EC 240 (nematicide) (0.01 μL a.i./mL soil) treated plants were used as controls. Reactive oxygen species (ROS) and chlorophyll content of tomato plants were estimated during the experiment. CS extract, at both doses, significantly reduced nematode population in comparison to the untreated control, although it was less effective than Fenamiphos. BSG extract did not reduce final nematode population compared to the control. Ten days after the first treatment, CS 100 %, BSG 50 % and BSG 100% elicited the highest ROS values, which considerably affected the growth of tomato plants in comparison to the untreated plants. The control of these pests is meeting with difficulties because of the current national and international regulations in force, which are limiting the use of synthetic nematicides. Therefore, CS extracts could assume economic relevance, as alternative products to be used in sustainable strategies for nematode management.


Author(s):  
Pranaya Pradhan ◽  
Dhirendra Kumar Nayak ◽  
Manaswini Mahapatra

The significant constraints in Chickpea (Cicer arietinum L.) production hampers a bit more than 14% global yield loss due to plant-parasitic nematodes. Root-knot nematode (Meloidogyne sp.) is an endoparasite and a significant species affecting the chickpea plant. So, the chemical basis of management is more cost-effective, and pest resurgence building is enhanced in the pathogen. So, ecological-based nematode management is requisite, which also is got hampered due to breeding for resistance against such plant-parasitic nematodes. This was the primary reason to conduct this experiment to enhance resistance in the chickpea plants based on Zinc uptake by using bioagent, Pseudomonas fluorescens alone or in combination. where Different treatments including nematode, bacterium, and chemicals were used sustaining the enhancement of disease resistance in chickpea cultivars, RSG 974, GG 5, GNG 2144. Zinc content of chickpea variety GNG 2144 was found the highest in treatment, when only bacterium (P. fluorescens) was inoculated, i.e., 3.14 mg/100g of root followed by GG 5, i.e., 2.79 mg/100g of root and RSG 974 was, i.e., 2.35 mg/100g of root respectively in a descending order. Application of P. fluorescence combined or alone gradually increased the Zn concentration in roots of chickpea plants compared to healthy check followed by chemical treated plants.


2013 ◽  
Vol 27 (3) ◽  
pp. 497-501 ◽  
Author(s):  
Aline M. Crespo ◽  
Andrew W. MacRae ◽  
Cristiane Alves ◽  
Tyler P. Jacoby ◽  
Rick O. Kelly

Fresh market tomato is an important and valuable crop in Florida, accounting for 630 million dollars farm-gate value, which was 45% of the total value of the U.S. crop in 2010. In order to maintain or increase its productivity, labeled herbicide alternatives to methyl bromide are important to limiting seed production of weeds emerging between the raised plasticulture beds. A study was conducted inside a greenhouse where carfentrazone was applied as a drench at 0.03125×, 0.0625×, 0.125×, 0.25×, 0.5×, 1×, 2×, 4×, and 8× and as a subsurface irrigation at 0.0625×, 0.125×, 0.25×, 0.5×, 1×, 2×, 4×, 8×, and 16× rates. The 1× rate equaled the maximum labeled rate of carfentrazone (35.1 g ai ha−1) that would be applied to an area of 0.360 m2. Both the drench and subsurface trials showed an increase in plant injury and reduced growth as the rate of carfentrazone increased. The drench trial, however, was observed to have higher visible injury and greater growth reduction (based on plant measurement) than the subsurface trial, when comparing similar rates. For the 1× rate of carfentrazone in the drench trial vs. the subsurface trial, injury was 66 and 24.5%, respectively. For the 1× rate the tomato plants had estimated growth, based on the curves fit for the data, of 4.8% vs. 39.9% for the drench and subsurface trials, respectively. The subsurface trial better represents what happens in the field when carfentrazone root uptake injury is observed since it is normally observed to be around 10% or less. This still leaves a level of concern; once a 10% injury level in the subsurface trial was estimated to have reduced tomato growth, fruit weight, and total shoot dry weight by 33, 15, and 9.5%, respectively.


2015 ◽  
Vol 33 (4) ◽  
pp. 488-492 ◽  
Author(s):  
Claudia R Dias-Arieira ◽  
Danielle Mattei ◽  
Heriksen H Puerari ◽  
Regina CF Ribeiro

ABSTRACT: Root-knot nematodes, Meloidogyne spp., are among the most important parasites of the lettuce crop. Managing these organisms is difficult due to limitations in genetic (use of resistant cultivars) and chemical control. Thus, new practices should be sought to reduce their reproduction. The present study aimed to evaluate the application of organic amendments in the control of Meloidogyne incognita in lettuce. At first, tomato plants were inoculated to establish an initial population in the soil. After 60 days, the aerial part was discarded, and the lettuce seedlings were transplanted into pots. Two days after transplanting, the treatments bokashi, crambe cake, whey protein, cottonseed composted and shredded wood chip composted were applied at 20 g or 20 mL per pot. Water was applied as control treatment. After 70 days, bokashi and crambe meal reduced the number of eggs/g of root and promoted plant growth. Results obtained with whey protein, cottonseed meal and composted shredded wood chip did not differ from those obtained with the control treatment. Bokashi and crambe cake are effective in the M. incognita control under controlled conditions.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1085
Author(s):  
Duarte Santos ◽  
Isabel Abrantes ◽  
Carla Maleita

In December 2017, a Ficus microcarpa “Tiger bark” bonsai tree was acquired in a shopping center in Coimbra, Portugal, without symptoms in the leaves, but showing small atypical galls of infection caused by root-knot nematodes (RKN), Meloidogyne spp. The soil nematode community was assessed and four Tylenchida genera were detected: Helicotylenchus (94.02%), Tylenchus s.l. (4.35%), Tylenchorynchus s.l. (1.09%) and Meloidogyne (0.54%). The RKN M. javanica was identified through analysis of esterase isoenzyme phenotype (J3), PCR-RFLP of mitochondrial DNA region between COII and 16S rRNA genes and SCAR-PCR. The Helicotylenchus species was identified on the basis of female morphology that showed the body being spirally curved, with up to two turns after relation with gentle heat, a key feature of H. dihystera, and molecular characterization, using the D2D3 expansion region of the 28S rDNA, which revealed a similarity of 99.99% with available sequences of the common spiral nematode H. dihystera. To our knowledge, M. javanica and H. dihystera are reported for the first time as parasitizing F. microcarpa. Our findings reveal that more inspections are required to detect these and other plant-parasitic nematodes, mainly with quarantine status, to prevent their spread if found.


2017 ◽  
Vol 3 ◽  
pp. 27-31 ◽  
Author(s):  
Suraj Baidya ◽  
Ram Devi Timila ◽  
Ram Bahadur KC ◽  
Hira Kaji Manandhar ◽  
Chetana Manandhar

The root-knot nematodes (Meloidogyne spp) are difficult to manage once established in the field because of their wide host range, and soil-borne nature. Thus, the aim of the present study was to examine the use of resistant root stock of wild brinjal (Solanum sisymbriifolium) to reduce the loss caused by the nematodes on tomato. For the management of root-knot nematodes, grafted plant with resistant root stock of the wild brinjal was tested under farmers’ field conditions at Hemza of Kaski district. Grafted and non-grafted plants were produced in root-knot nematode-free soil. Around three week-old grafted and non-grafted tomato plants were transplanted in four different plastic tunnels where root-knot nematodes had been reported previously. The plants were planted in diagonal position to each other as a pair plot in 80 × 60 cm2 spacing in an average of 20 × 7 m2 plastic tunnels. Galling Index (GI) was recorded three times in five randomly selected plants in each plot at 60 days intervals. The first observation was recorded two months after transplanting. Total fruit yield was recorded from same plants. In the grafted plants, the root system was totally free from gall whereas in an average of 7.5 GI in 0-10 scale was recorded in the non-grafted plants. Fruits were harvested from time to time and cumulated after final harvest to calculate the total fruit yield. It was estimated that on an average tomato fruit yield was significantly (P>0.05) increased by 37 percent in the grafted plants compared with the non-grafted plants. Grafting technology could be used effectively for cultivation of commonly grown varieties, which are susceptible to root-knot nematodes in disease prone areas. This can be used as an alternative technology for reducing the use of hazardous pesticides for enhancing commercial organic tomato production.Journal of Nepal Agricultural Research Council Vol.3 2017: 27-31


2020 ◽  
pp. 54-57
Author(s):  
Ah. A. Suliman ◽  
A. G. Abramov ◽  
A. A. Shalamova

Relevance and methods. This study aimed to improve fruit set and plant performance to increase tomato productivity by studying the effect of plant growth regulators on tomato plants. A specific experiment has been carried out to study the effect of plant growth regulators Hemo bles active substances (850 g/kg) Humic Acid with applied doses (250, 500 and 700 ppm) and Magictone active substances (5-12.5 g/kg) naphthalene acetic acid and naphthalene acetamide with applied doses (250, 500 and 700 ppm) on growth and physiological characteristics of tomato plants (Big Beef F1). The experimental design was a Complete Randomized Blocks Design. Both Hemo bles and Magictone were applied three times (spraying on plants at 30 DAP, spraying on plants at 60 DAP and spraying on plants 90 DAP).Results. The obtained results showed that, Applying Humic Acid “Ener-850” had the highest significant fruit weight (137 g) during the two seasons. Also using “Magictone” had the highest significant Flowers number (48.1), Fruits Number (35.1), Flower Clusters number in the plant (13.6) and Fruits Number (54.6. while (Humic Acid) improved tomato fruit’s quality during improve Dry weight (75.1 g) of Arial parts, Ascorbic Acid, level of Vitamin C and Carotenoids contents (4.82 mg 100 g-1). The results were analyzed using one-way analysis of variance (ANOVA) followed by Tukey’s HSD test with α = 0.05 with the help of MINITAB (v. 19.0) program.


2018 ◽  
Author(s):  
Rajni Kant Thakur ◽  
Babita Dhirta ◽  
Poonam Shirkot

AbstractThe plant parasitic nematodes are one of world major agricultural pest, causing in excess of 157 billion dollars in worldwide damage annually. This study has provided evidence that gold nanoparticles have great utility for management of root-knot nematodes in tomato crop. The effect of gold nanoparticles onMeloidogyne incognitaJ2 was remarkable under the direct exposure in water, after three hours of incubation of Meloidogyne incognita with GNPs showed the 100% mortality. The lesser survival rate ofMeloidogyne incognitain soil treatment showed the strong nematicidal effect of gold nanoparticles. Subsequently, the pot experiment had shown the beneficial effects of gold nanoparticles for intensively managing the root-knot nematode. The Pot experiment not only showed us that GNPs were lethal to root-knot nematodes were also induces growth of tomato plants and didn’t have any kind of negative impact on plant growth. In our study, GNPs were found to be safe and lethal to Meloidogyne incognita.


Sign in / Sign up

Export Citation Format

Share Document