394 HIGH-AND-LOW RESOLUTION ANALYSIS OF GROWTH IN SNAPDRAGON (Antirrhinum majus cv. Giant Tetra) AND ZINNIA (Zinnia elegens cv. Pompom)
Stem elongation rates (SER) in snapdragon end zinnia were recorded in 3 DIF regimes (+5, -5, and 0; Daily average: 18C) using both high resolution (linear transducers), and low resolution techniques. Three developmental stages were chosen for study: Stage 1 was vegetative growth, preceding the formation of a flower bud. Stage 2 was the period from bud formation to preliminary expansion. Stage 3 was the period just before anthesis. Low resolution measurements showed a decrease in snapdragon height in response to a negative DIF. A negative DIF was less effective in reducing zinnia height especially after the third developmental stage. Final plant height for both species was not affected by placing plants in the 3 DIF regimes for 1 week during the growth cycle. Snapdragon and zinnia displayed unique diurnal SER patterns. Snapdragon showed a large peak in SER at the start of the dark period followed by a gradual decline. SER increased again during the light period. Most growth in vegetative zinnias occurred around the light/dark transition. This peak growth tended to shift to the night period as buds were formed and flowering proceeded. High resolution measurements revealed a reduction in SER for both species at negative DIP; greatest decreases occurred during the night. DIF exerts an influence on diurnal SER in both snapdragon and zinnia, despite well defined differences in SER patterns. Negative DIF suppresses the SER of both species at all 3 developmental stages, but must be applied consistently in order to produce significant differences in final plant height.