scholarly journals Nitrogen Leaching, Water, and Nitrogen Use Efficiency of Citrus Trees Fertilized at Three Rates of Nitrogen

HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 780C-780
Author(s):  
Jim Syvertsen ◽  
M.L. Smith

Effects of nitrogen (N) rate and rootstock on tree growth, fruit yield, evapotranspiration, N uptake, and N leaching were measured over a 2-year period. Four-year-old `Redblush' grapefruit trees on either sour orange (SO), a relatively slow-growing rootstock, or `Volkamer' lemon (VL), a more-vigorous rootstock, were transplanted into 7.9-m3 drainage lysimeter tanks filled with native sand and fertilized at three N rates. N rates averaged from about 14% to 136% of the recommended rate when trees were 5 and 6 years old. More N leached below trees on SO as trees on VL had greater N uptake efficiency. Canopy volume and leaf N concentration increased with N rate, but rootstock had no effect on leaf N. Fruit yield of trees on SO was not affected by N rate, but high N increased water use and yield for larger trees on VL. Canopy growth or yield per volume of water used (water use efficiency) was lowest at low N, but N use efficiency was highest at the low N rates.

1996 ◽  
Vol 121 (1) ◽  
pp. 105-114 ◽  
Author(s):  
John D. Lea-Cox ◽  
James P. Syvertsen

We examined how N supply affected plant growth and N uptake, allocation and leaching losses from a fine sandy soil with four Citrus rootstock species. Seedlings of `Cleopatra' mandarin (Citrus reticulata Blanco) and `Swingle' citrumelo (C. paradisi × P. trifoliata) were grown in a glasshouse in 2.3-liter pots of Candler fine sand and fertilized weekly with a complete nutrient solution containing 200 mg N/liter (20 mg N/week). A single application of 15NH415NO3(17.8% atom excess 15N) was substituted for a normal weekly N application when the seedlings were 22 weeks old (day O). Six replicate plants of each species were harvested at 0.5, 1.5, 3.5, 7, 11, and 30 days after 15N application. In a second experiment, NH4 NO3 was supplied at 18,53, and 105 mg N/week to 14-week-old `Volkamer' lemon (C. volkameriana Ten. & Pasq.) and sour orange (C. aurantium L.) seedlings in a complete nutrient solution for 8 weeks. A single application of 15NH415NO3 (23.0% 15N) was substituted at 22 weeks (day 0), as in the first experiment, and seedlings harvested 3,7, and 31 days after 15N application. Nitrogen uptake and partitioning were similar among species within each rate, but were strongly influenced by total N supply and the N demand by new growth. There was no 15N retranslocation to new tissue at the highest (105 mg N/week) rate, but N supplies below this rate limited plant growth without short-term 15N reallocation from other tissues. Leaf N concentration increased linearly with N supply up to the highest rate, while leaf chlorophyll concentration did not increase above that at 53 mg N/week. Photosynthetic CO2 assimilation was not limited by N in this study; leaf N concentration exceeded 100 mmol·m-2 in all treatments. Thus, differences in net productivity at the higher N rates appeared to be a function of increased leaf area, but not of leaf N concentration. Hence, N use efficiency decreased significantly over the range of N supply, whether expressed either on a gas-exchange or dry weight basis. Mean plant 15N uptake efficiencies after 31 days decreased from 60% to 47% of the 15N applied at the 18,20, and 53 mg N/week rates to less than 33% at the 105 mg N/week rate. Leaching losses increased with N rate, with plant growth rates and the subsequent N requirements of these Citrus species interacting with residual soil N and potential leaching loss.


1997 ◽  
Vol 122 (2) ◽  
pp. 226-232 ◽  
Author(s):  
J.P. Syvertsen ◽  
M.L. Smith ◽  
J. Lloyd ◽  
G.D. Farquhar

Five- to six-year-old `Redblush' grapefruit (Citrus paradisi Macf.) trees on `Volkamer' lemon [VL = C. volkameriana (Ten. & Pasq.)] or sour orange (SO = C. aurantium L.) rootstock, were grown individually in 7.9-m3 lysimeters for 2.5 years using low to high rates of fertilizer N. Net CO2 assimilation (ACO2) of leaves and leaf dry mass per area (DM/a) increased with leaf N concentration, whereas leaf tissue C isotope discrimination (Δ) decreased. Leaf tissue Δ was negatively related to ACO2 and DM/a. Transient effects of rootstock on leaf N were reflected by similar effects on Δ. There was no effect of leaf N on water-use efficiency (WUE) of leaves (WUEL = ACO2/transpiration); WUEL was not correlated with Δ. Although photosynthetic N use efficiency (ACO2/N) consistently decreased with increased leaf N, Δ was not consistently related to ACO2/N. Annual canopy growth, tree evapotranspiration (ET), and fruit yield increased with whole tree N uptake. Leaf tissue Δ was negatively related to all of these tree measurements at the end of the second year. By that time, whole-tree WUE (WUET, annual canopy growth per ET) also was negatively related to Δ. Larger trees on VL had higher ET than trees on SO, but there were no rootstock effects on WUET or on Δ. Leaf tissue Δ was consistently higher than Δ values of trunk and woody root tissues. Citrus leaf tissue Δ can be a useful indicator of leaf N, characteristics of leaf gas exchange, tree growth, yield, and WUET in response to N availability.


HortScience ◽  
2010 ◽  
Vol 45 (8) ◽  
pp. 1255-1259 ◽  
Author(s):  
Juan Carlos Melgar ◽  
Arnold W. Schumann ◽  
James P. Syvertsen

We determined if frequency of application of irrigation water plus fertilizer in solution (fertigation) could modify root and shoot growth along with growth per unit nitrogen (N) and water uptake of seedlings of the citrus rootstock Swingle citrumelo growing in a greenhouse. In the first experiment, all plants received the same amount of water with sufficient fertilizer N but in three irrigation frequencies applied in 10 1.5-mL pulses per day, one 15-mL application per day, or 45 mL applied every 3 days. Plants irrigated at the highest frequency grew the least total dry weight and had the highest specific root length. Plants with lowest irrigation frequency grew the most and used the least water so had the highest water use efficiency. There were no irrigation frequency effects on relative growth allocation between shoot and roots, net gas exchange of leaves, or on leaf N. A second experiment used identical biweekly irrigation volumes and fertilizer rates, but water and fertilizer were applied using four frequency combinations: 1) daily fertigation; 2) daily irrigation with fertilizer solution applied every 15 days; 3) fertigation every 3 days; or 4) irrigation every 3 days and fertilizer solution applied every 14 days. Total plant growth was unaffected by treatments, but the highest frequency using the lowest fertilizer concentration grew the greatest root dry weight in the uppermost soil depths. Roots grew less and leaf N was highest when N was applied every 15 days, implying that root N uptake efficiency was increased when fertigated with the highest fertilizer concentration. All plants had similar water use efficiencies. A third experiment was conducted with irrigation every 3 days and with four different N application frequencies: every 3, 6, 12, or 24 days using four fertilizer concentrations but resulting in similar total N amounts every 24 days. There were no differences in growth, gas exchange, or water use efficiency. Given the fact that all treatments received adequate and equal amounts of water and fertilizer, fertigation frequency had only small effects on plant growth, although very high frequency fertigation decreased N uptake efficiency.


Agronomy ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 331 ◽  
Author(s):  
Rasheed Ahmed ◽  
Yuzhong Li ◽  
Lili Mao ◽  
Chunying Xu ◽  
Wei Lin ◽  
...  

Globally, mineral nitrogen (N) losses as nitrate leaching (NL) are a substantial portion of applied fertilizer and cause surface and sub-surface water contamination. To precisely measure NL and its interlink parameters, biochar soil amendment was tested in this study. Three treatments—biochar (BC), without biochar (WB) with 15N urea (300 kg/ha), and control (no fertilization)—were tested in soil-filled lysimeters (circular PVC (Polyvinyl Chloride) tank of 30 cm diameter and 35 cm height) equipped with moisture content sensors and weighing assembly for the consecutive two cropping of Brassica Camprestis Var. Chinensis. The 15N-urea in the first season and the poultry manure in the second season were applied, but the fate of the 15N was examined in leachate, dry matter, and soil. As compared to WB, BC significantly decreased mineral N leaching, including nitrate levels (35%), increased electrical conductivity (68.5%), and water availability (20% inches per foot), while there was a non-significant increase in biomass per plant (2.84%), evapotranspiration (8.33%), dry matter (6.89%), and a decrease in mean leachate volume (7.63%). Moreover, BC accumulated values were higher than WB, as N uptake (38%), water use efficiency (12.24%), maximum fresh weight (11.4%), and soil N retained (185%) after cropping. The soil pH, the bulk density, and the total nitrogen were changed but presented non-significant differences. Therefore, biochar can increase soil N retention and available water to improve water use efficiency and decrease potential N leaching.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 515
Author(s):  
Ying Ouyang ◽  
Gary Feng ◽  
Heidi Renninger ◽  
Theodor D. Leininger ◽  
Prem Parajuli ◽  
...  

Eucalyptus is one of the fastest growing hardwoods for bioenergy production. Currently, few modeling tools exist to simultaneously estimate soil hydrological processes, nitrogen (N) uptake, and biomass production in a eucalyptus plantation. In this study, a STELLA (Structural Thinking and Experiential Learning Laboratory with Animation)-based model was developed to meet this need. After the model calibration and validation, a simulation scenario was developed to assess eucalyptus (E. grandis × urophylla) annual net primary production (ANPP), woody biomass production (WBP), water use efficiency (WUE), and N use efficiency (NUE) for a simulation period of 20 years. Simulation results showed that a typical annual variation pattern was predicted for water use, N uptake, and ANPP, increasing from spring to fall and decreasing from fall to the following winter. Overall, the average NUE during the growth stage was 700 kg/kg. To produce 1000 kg eucalyptus biomass, it required 114.84 m3 of water and 0.92 kg of N. This study suggests that the STELLA-based model is a useful tool to estimate ANPP, WBP, WUE, and NUE in a eucalyptus plantation.


Heliyon ◽  
2020 ◽  
Vol 6 (12) ◽  
pp. e05718
Author(s):  
Md. Akhter Hossain Chowdhury ◽  
Taslima Sultana ◽  
Md. Arifur Rahman ◽  
Tanzin Chowdhury ◽  
Christian Ebere Enyoh ◽  
...  

2009 ◽  
Vol 45 (3) ◽  
pp. 275-286 ◽  
Author(s):  
LIMEI ZHAO ◽  
LIANGHUAN WU ◽  
YONGSHAN LI ◽  
XINGHUA LU ◽  
DEFENG ZHU ◽  
...  

SUMMARYField experiments were conducted in 2005 and 2006 to investigate the impacts of alternative rice cultivation systems on grain yield, water productivity, N uptake and N use efficiency (ANUE, agronomic N use efficiency; PFP, partial factor productivity of applied N). The trials compared the practices used with the system of rice intensification (SRI) and traditional flooding (TF). The effects of different N application rates (0, 80, 160 and 240 kg ha−1) and of N rates interacting with the cultivation system were also evaluated. Resulting grain yields with SRI ranged from 5.6 to 7.3 t ha−1, and from 4.1 to 6.4 t ha−1 under TF management. On average, grain yields under SRI were 21% higher in 2005 and 22% higher in 2006 than with TF. Compared with TF, SRI plots had higher harvest index across four fertilizer N rates in both years. However, there was no significance difference in above-ground biomass between two cultivation systems in either year. ANUE was increased significantly under SRI at 80 kg N ha−1 compared with TF, while at higher N application rates, ANUE with SRI was significantly lower than TF. Compared with TF, PFP under SRI was higher across all four N rates in both years, although the difference at 240 kg N ha−1 was not significant. As N rate increased, the ANUE and PFP under both SRI and TF significantly decreased. Reduction in irrigation water use with SRI was 40% in 2005 and 47% in 2006, and water use efficiency, both total and from irrigation, were significantly increased compared to TF. With both SRI and TF, the highest N application was associated with decreases in grain yield, N use efficiency and water use efficiency. This is an important finding given current debates whether N application rates in China are above the optimum, especially considering consequences for soil and water resources. Cultivation system, N rates and their interactions all produced significant differences in this study. Results confirmed that optimizing fertilizer N application rates under SRI is important to increase yield, N use efficiency and water use efficiency.


2019 ◽  
Vol 12 (1) ◽  
pp. 10
Author(s):  
Jinji Zhang ◽  
Zhuangzhuang Cao ◽  
Haibo Dai ◽  
Zhiping Zhang ◽  
Minmin Miao

Fertigation with surface drip has been introduced and broadly applied for vegetable cultivation in the Eastern China, which presents high precipitation and always has shallow groundwater. To estimate the influence of high groundwater level on the tomato nitrogen (N) and water use efficiency and develop new sensor-based fertigation technology, experiments were executed in plastic greenhouse in the experimental farm of Yangzhou University located in the suburban of Yangzhou city during 2016-2017 growing seasons using a block randomization with three replications. Three N dosages and 4 watering treatments were carried out in this experiment. The data indicated that irrigation threshold of -35 kPa was optimum to get the maximum production of tomato. In this treatment, the value of estimated plant evapotranspiration (ETc) was much higher than total applied water volume, suggesting high groundwater table had a significant contribution on the tomato ETc and a sensor-based irrigation strategy should be more accurate than the simulated ETc irrigation method to calculate the water demand under this condition. In addition, our results indicated that high groundwater level had a positive effect to alleviating N leaching. Finally, we can conclude that fertigation technology enhanced the N use efficiency (NUE) and water use efficiency (WUE) and three fourths of the calculated N dosage (according to a traditional nutrient equation) was sufficient to optimize tomato yield.


2020 ◽  
Vol 12 (7) ◽  
pp. 2703
Author(s):  
Yan Zhu ◽  
Huanjie Cai ◽  
Libing Song ◽  
Xiaowen Wang ◽  
Zihui Shang ◽  
...  

Aerated irrigation (AI) is a method to mitigate rhizosphere hypoxia caused by the wetting front from subsurface drip irrigation (SDI). This study evaluated the impacts of AI on soil aeration, plant growth performance, fruit yield (tomato), irrigation water use efficiency (IWUE), fruit nutrition (lycopene and Vitamin C (VC)) and taste (soluble sugar, organic acid and sugar–acid ratio) quality. A three-factorial experiment including AI and SDI at three irrigation levels (W0.6, W0.8 and W1.0, corresponding with crop-pan coefficients of 0.6, 0.8 and 1.0) and two dripper depths (D15 and D25, burial at 15 and 25 cm, respectively), totaling 12 treatments overall, was conducted in a greenhouse during the tomato-growing season (April–July) in 2016. The AI improved soil aeration conditions, with significantly increased soil oxygen concentration and air-filled porosity relative to SDI. Moreover, the AI improved crop growth performance, with increased root morphology (diameter, length density, surface area and volume density), delayed flowering time, prolonged flowering duration and increased shoot (leaf, stem and fruit) dry weight, and harvest index. Fruit yield per plant, fruit weight, IWUE, the contents of lycopene, VC and soluble sugar, and sugar–acid ratio significantly increased under AI treatments (P < 0.05). As the irrigation level increased, fruit yield, number, and weight increased (P < 0.05), but IWUE and fruit lycopene, soluble sugar, and organic acid content decreased (P < 0.05). The dripper depth had no significant impact on fruit yield, nutrition and taste quality. Principal component analysis revealed that the optimal three treatments in terms of fruit yield, IWUE, and nutrition and taste quality were the treatments W0.6D25AI, W1.0D25AI and W1.0D15AI. These results suggest that AI can improve tomato growth performance and increase fruit yield, nutrition and taste quality, and IWUE through enhancing soil aeration conditions.


2013 ◽  
Vol 40 (2) ◽  
pp. 201 ◽  
Author(s):  
Gyro L. Sherwin ◽  
Laurel George ◽  
Kamali Kannangara ◽  
David T. Tissue ◽  
Oula Ghannoum

This study explored reductions in tissue nitrogen concentration ([N]) at elevated CO2 concentrations ([CO2]), and changes in plant water and N uptake. Eucalyptus saligna Sm. seedlings were grown under three [CO2] levels (preindustrial (280 μL L–1), current (400 μL L–1) or projected (640 μL L–1)) and two air temperatures (current, (current + 4°C)). Gravimetric water use, leaf gas exchange and tissue dry mass and %N were determined. Solid-state 15N-NMR spectroscopy was used for determining the partitioning of N chemical groups in the dry matter fractions. Water use efficiency (WUE) improved with increasing [CO2] at ambient temperature, but strong leaf area and weak reductions in transpiration rates led to greater water use at elevated [CO2]. High temperature increased plant water use, such that WUE was not significantly stimulated by increasing [CO2] at high temperature. Total N uptake increased with increasing [CO2] but not temperature, less than the increase recorded for plant biomass. Tissue [N] decreased with rising [CO2] and at high temperature, but N use efficiency increased with rising [CO2]. Total N uptake was positively correlated with total water use and root biomass under all treatments. Growth [CO2] and temperature did not affect the partitioning of 15N among the N chemical groups. The reductions of tissue [N] with [CO2] and temperature were generic, not specific to particular N compounds. The results suggest that reductions in tissue [N] are caused by changes in root N uptake by mass flow due to altered transpiration rates at elevated [CO2] and temperature.


Sign in / Sign up

Export Citation Format

Share Document