scholarly journals An Innovative Application of MEISTER (Polyolefin-coated Urea) to Strawberry Pots to Supply N for the Whole Growing Season in Kumamoto, South Japan

HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 663d-663
Author(s):  
K. Takamori ◽  
T. Ishida ◽  
S. Miyoshi ◽  
K. Ayama ◽  
T. Higashi

A hundred days and 240 days are required for growing strawberry plants in the nursery and in the greenhouse, respectively. Therefore, fertilization using conventional fertilizers is often repeated. To eliminate repeated topdressing, to decrease the amount of N to apply, and to save farming labor, a new fertilization method using MEISTER was studied. Since MEISTER is an excellent controlled fertilizer, the new method can apply all N necessary to grow strawberry plants almost for a year only by a single application (no N fertilizer is applied to the greenhouse soil). The experimental plots basically consist of two kinds of treatment: changing ratios of soil volume per pot or per plant (50 to 800 ml/pot) and kinds and levels of fertilizers (conventional fertilizer and two kinds of MEISTER). The experimental results showed 1) soil of ≥200 ml/pot is necessary to grow strawberry seedlings in summer when the soil is subjected to drying, 2) a blended material of two MEISTER products with sigmoid dissolution can supply N for the whole growing season, and 3) MEISTER application can reduce 40% of the total N conventionally applied.

HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 663c-663
Author(s):  
Y. Suenaga ◽  
K. Takamori ◽  
F. Nishimot ◽  
S. Miyoshi ◽  
T. Higashi

It is not uncommon that tipburns, deformation, and poor coloring of strawberries, delaying of differentiation of flowering buds and flowering, etc., occur reflecting rapid changes in soil solution concentrations by repeated applications of conventional fertilizers. These physiological disorders contribute to lowering the yield and quality of strawberries to a significant extent. Polyolefin coated urea called “MEISTER” is one of the excellent controlled availability fertilizers whose dissolution is primarily controlled by temperature. Therefore, blended materials of a few MEISTER products can supply N matching the plant demand for the long growing season (8 months). This results in contributing to the prevention of occurrences of the physiological disorders described above. Treatment plots using blended materials of MEISTER products were early dissolution, even dissolution, and late dissolution and were fertilized with a single basal application. Compared with the conventional plot, the late dissolution plot was most suitable for strawberry growth, producing the largest yield of high quality. The new fertilization using MEISTER will contribute to decreasing the amount of fertilizer to apply, eliminating topdressing, saving labor cost, etc.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 672e-672
Author(s):  
Peter Bierman ◽  
Tom Wall

Inadequate N can reduce growth and yield, but excess N can be uneconomical and environmentally harmful. Our objective was to investigate the potential for using fertigation and on-farm plant-nutrient monitoring to improve the efficiency of N fertilizer use by bell peppers (Capsicum annuum L.). Two N fertilizer treatments were compared: 1) all N applied preplant and 2) one-third of the N applied preplant and the remainder injected into the drip-irrigation lines throughout the growing season. Total application rates were N at 118 kg·ha–1 for both treatments. Data were collected for total yield, marketable yield, and fruit size. Leaf and petiole samples were collected every 2 weeks and were used to monitor plant N status throughout the growing season. A Horiba/Cardy nitrate meter was used to measure nitrate concentrations in freshly-pressed petiole sap. A SPAD chlorophyll meter was used to measure leaf chlorophyll content and give an indirect measure of leaf N concentrations. Subsamples of leaves and petioles also were saved for conventional laboratory analyses. Whole (aboveground) plant samples were collected every 2 weeks, analyzed, and used to calculate differences in N accumulation. Suction cup samplers were installed at the 24-in soil depth and water samples collected every 1 to 2 weeks for nitrate analysis. Except for early in the growing season, petiole sap nitrate and leaf chlorophyll were higher in the fertigation treatment. Plant dry matter and total N accumulation also were much larger, but fertigation did not increase yield. Nitrate leaching was greater early in the season with 100% preplant N, but later in the season it was greater with fertigation. Data suggested that adequate plant N, reduced nitrate leaching, and equivalent yields are possible with fertigation at reduced N-rates compared to 100% preplant fertilizer applications.


HortScience ◽  
2016 ◽  
Vol 51 (2) ◽  
pp. 186-191 ◽  
Author(s):  
Xiaojie Zhao ◽  
Guihong Bi ◽  
Richard L. Harkess ◽  
Jac J. Varco ◽  
Tongyin Li ◽  
...  

Tall bearded (TB) iris (Iris germanica L.) has great potential as a specialty cut flower due to its fragrance and showy, multicolor display; however, limited research has been reported on optimal nitrogen (N) nutrient management for TB iris. The objectives of this study were to investigate the effects of N fertilizer rate on plant growth and flowering of ‘Immortality’ iris and determine the influence of both stored N and spring-applied N fertilizer on spring growth and flowering. On 14 Mar. 2012, rhizomes of ‘Immortality’ iris were potted in a commercial substrate with no starter fertilizer. Plants were fertigated with 0, 5, 10, 15, or 20 mm N from NH4NO3 twice per week from 28 Mar. to 28 Sept. 2012. In 2013, half of the plants from each of the 2012 N rate were supplied with either 0 or 10 mm N from 15NH415NO3 twice per week from 25 Mar. to 7 May 2013. Growth and flowering data including plant height, leaf SPAD, number of fans and inflorescence stems, and length of inflorescence stem were collected during the growing season. Plants were harvested in Dec. 2012 and May 2013 to measure dry weight and N concentration in leaves, roots, and rhizomes. Results showed higher 2012 N rates increased plant height, leaf SPAD reading, and number of inflorescence stems at first and second blooming in 2012. Greater 2012 N rates also increased plant dry weight and N content in all structures, and N concentration in roots and rhizomes. Rhizomes (58.8% to 66.3% of total N) were the dominant sink for N in Dec. 2012. Higher 2012 N rates increased plant height, number of fans, and the number of inflorescence stems at spring bloom in 2013. In May 2013, N in leaf tissue constituted the majority (51% to 64.3%) of the total plant N. Higher 2012 N rates increased total dry weight, N concentration, and N content in all 2013 15N rates; however, leaf dry weight in all plants was improved by 2013 15N rate. Percentage of tissue N derived from 2013 15N (NDFF) decreased with increasing 2012 N rate. New spring leaves were the dominant sink (56.8% to 72.2%) for 2013 applied 15N. In summary, ‘Immortality’ iris is capable of a second blooming in a growing season, this second blooming dependent on N fertilization rate in current year. A relatively high N rate is recommended to produce a second bloom.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 656b-656
Author(s):  
Y. Teraoka ◽  
K. Kubo ◽  
S. Miyoshi ◽  
T. Higashi

A capillary watering system can easily control water supply to cyclamen and can save nutrient losses by leaching. Introduction of single basal placement using MEISTER will be useful to innovate the traditional cyclamen culture. The conventional cyclamen culture using Nutricote needs double transplanting and double fertilization. In the new cyclamen culture, cyclamen seedlings (sowed on the plug tray in early January) were transplanted to 15-cm pots fertilized with MEISTER in early June. The selected MEISTER was one belonging to the sigmoid dissolution group, which showed delayed release during summer and the maximum release in early September. The new fertilization supplied N to the plants until the end of growing season. The growth of cyclamen plants on two experimental plots were compared at the flowering stage. Numbers and weight of flowers per pot and bulb weight were greater in the new culture than in the conventional culture though the total volume of leaves was less in the former. Regarding the nutrient absorption, the plants of the new culture showed lower concentrations of N and P in the leaves but higher concentrations of Ca and Mg compared to those in the conventional culture. Such nutrient uptake could contribute to preventing the occurrence of tipburn in the new culture.


Author(s):  
Betina Nørgaard Pedersen ◽  
Bent T. Christensen ◽  
Luca Bechini ◽  
Daniele Cavalli ◽  
Jørgen Eriksen ◽  
...  

Abstract The plant availability of manure nitrogen (N) is influenced by manure composition in the year of application whereas some studies indicate that the legacy effect in following years is independent of the composition. The plant availability of N in pig and cattle slurries with variable contents of particulate matter was determined in a 3-year field study. We separated cattle and a pig slurry into liquid and solid fractions by centrifugation. Slurry mixtures with varying proportions of solid and liquid fraction were applied to a loamy sand soil at similar NH4+-N rates in the first year. Yields and N offtake of spring barley and undersown perennial ryegrass were compared to plots receiving mineral N fertilizer. The first year N fertilizer replacement value (NFRV) of total N in slurry mixtures decreased with increasing proportion of solid fraction. The second and third season NFRV averaged 6.5% and 3.8% of total N, respectively, for cattle slurries, and 18% and 7.5% for pig slurries and was not related to the proportion of solid fraction. The estimated net N mineralization of residual organic N increased nearly linearly with growing degree days (GDD) with a rate of 0.0058%/GDD for cattle and 0.0116%/GDD for pig slurries at 2000–5000 GDD after application. In conclusion NFRV of slurry decreased with increasing proportion of solid fraction in the first year. In the second year, NFRV of pig slurry N was significantly higher than that of cattle slurry N and unaffected by proportion between solid and liquid fraction.


2021 ◽  
Vol 109 (5) ◽  
pp. 357-365
Author(s):  
Zhiqiang Cheng ◽  
Zhongqi Zhao ◽  
Junxia Geng ◽  
Xiaohe Wang ◽  
Jifeng Hu ◽  
...  

Abstract To develop the application of 95Nb as an indicator of redox potential for fuel salt in molten salt reactor (MSR), the specific activity of 95Nb in FLiBe salt and its deposition of 95Nb on Hastelloy C276 have been studied. Experimental results indicated that the amount of 95Nb deposited on Hastelloy C276 resulted from its chemical reduction exhibited a positive correlation with the decrease of 95Nb activity in FLiBe salt and the relative deposition coefficient of 95Nb to 103Ru appeared a well correlation with 95Nb activity in FLiBe salt. Both correlations implied that the measurement of 95Nb activity deposited on Hastelloy C276 specimen might provide a quantitative approach for monitoring the redox potential of fuel salt in MSR.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Ting Qian ◽  
Ling Wei

As an important tool for data analysis and knowledge processing, formal concept analysis (FCA) has been applied to many fields. In this paper, we introduce a new method to find all formal concepts based on formal contexts. The amount of intents calculation is reduced by the method. And the corresponding algorithm of our approach is proposed. The main theorems and the corresponding algorithm are examined by examples, respectively. At last, several real-life databases are analyzed to demonstrate the application of the proposed approach. Experimental results show that the proposed approach is simple and effective.


SIMULATION ◽  
1968 ◽  
Vol 10 (5) ◽  
pp. 221-223 ◽  
Author(s):  
A.S. Chai

It is possible to replace k2 in a 4th-order Runge-Kutta for mula (also Nth-order 3 ≤ N ≤ 5) by a linear combination of k1 and the ki's in the last step, using the same procedure for computing the other ki's and y as in the standard R-K method. The advantages of the new method are: It re quires one less derivative evaluation, provides an error estimate at each step, gives more accurate results, and needs a minor change to switch to the RK to obtain the starting values. Experimental results are shown in verification of the for mula.


2001 ◽  
Vol 1 ◽  
pp. 750-757 ◽  
Author(s):  
Stan Daberkow ◽  
Harold Taylor ◽  
Noel Gollehon ◽  
Milt Moravek

Given the societal concern about groundwater pollution from agricultural sources, public programs have been proposed or implemented to change farmer behavior with respect to nutrient use and management. However, few of these programs designed to change farmer behavior have been evaluated due to the lack of detailed data over an appropriate time frame. The Central Platte Natural Resources District (CPNRD) in Nebraska has identified an intensively cultivated, irrigated area with average groundwater nitrate-nitrogen (N) levels about double the EPA’s safe drinking water standard. The CPNRD implemented a joint education and regulatory N management program in the mid-1980s to reduce groundwater N. This analysis reports N use and management, yield, and groundwater nitrate trends in the CPNRD for nearly 3000 continuous-corn fields from 1989 to 1998, where producers faced limits on the timing of N fertilizer application but no limits on amounts. Groundwater nitrate levels showed modest improvement over the 10 years of this analysis, falling from the 1989–1993 average of 18.9 to 18.1 mg/l during 1994–1998. The availability of N in excess of crop needs was clearly documented by the CPNRD data and was related to optimistic yield goals, irrigation water use above expected levels, and lack of adherence to commercial fertilizer application guidelines. Over the 10-year period of this analysis, producers reported harvesting an annual average of 9729 kg/ha, 1569 kg/ha (14%) below the average yield goal. During 1989�1998, producers reported annually applying an average of 162.5 kg/ha of commercial N fertilizer, 15.7 kg/ha (10%) above the guideline level. Including the N contribution from irrigation water, the potential N contribution to the environment (total N available less estimated crop use) was estimated at 71.7 kg/ha. This is an estimate of the nitrates available for denitrification, volatilization, runoff, future soil N, and leaching to groundwater. On average, between 1989–1993 and 1994–1998, producers more closely followed CPNRD N fertilizer recommendations and increased their use of postemerge N applications � an indication of improved synchrony between N availability and crop uptake.


2011 ◽  
Vol 8 (11) ◽  
pp. 3159-3168 ◽  
Author(s):  
Y. Xia ◽  
X. Yan

Abstract. Nitrogen (N) fertilizer plays an important role in agricultural systems in terms of food yield. However, N application rates (NARs) are often overestimated over the rice (Oryza sativa L.) growing season in the Taihu Lake region of China. This is largely because negative externalities are not entirely included when evaluating economically-optimal nitrogen rate (EONR), such as only individual N losses are taken into account, or the inventory flows of reactive N have been limited solely to the farming process when evaluating environmental and economic effects of N fertilizer. This study integrates important material and energy flows resulting from N use into a rice agricultural inventory that constitutes the hub of the life-cycle assessment (LCA) method. An economic evaluation is used to determine an environmental and economic NAR for the Taihu Lake region. The analysis reveals that production and exploitation processes consume the largest proportion of resources, accounting for 77.2 % and 22.3 % of total resources, respectively. Regarding environmental impact, global warming creates the highest cost with contributions stemming mostly from fertilizer production and farming processes. Farming process incurs the biggest environmental impact of the three environmental impact categories considered, whereas transportation has a much smaller effect. When taking account of resource consumption and environmental cost, the marginal benefit of 1 kg rice would decrease from 2.4 to only 1.05 yuan. Accordingly, our current EONR has been evaluated at 187 kg N ha−1 for a single rice-growing season. This could enhance profitability, as well as reduce the N losses associated with rice growing.


Sign in / Sign up

Export Citation Format

Share Document