scholarly journals 313 Iron-chelate Photodegradation in Lab-prepared Nutrient Solutions Alters Root Physiology and Causes Mn Toxicity in Marigold

HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 496E-496
Author(s):  
Joseph P. Albano ◽  
William B. Miller

Our objective was to determine the effects on plant growth and physiology that a photodegraded Fe-chelate containing lab-prepared nutrient solution would have when used in plant culture. Plants grown hydroponically in the irradiated Fe-DTPA containing nutrient solution had ferric reductase activity 2.2 times greater, foliar Fe level 0.77 times less, and foliar Mn level 1.9 times greater than in plants grown in an identical but non-irradiated solution, indicating that plants growing in the irradiated solution were responding to Fe deficiency stress with physiological reactions associated with Fe efficiency. The youngest leaves of plants that were grown in the irradiated solution had symptoms of Mn toxicity. Restoration of the irradiated solution by removing the precipitated Fe by centrifugation and adding fresh Fe-chelate resulted in plants that were, in general, not different from those grown in the non-irradiated solution (control).

HortScience ◽  
2001 ◽  
Vol 36 (2) ◽  
pp. 317-320 ◽  
Author(s):  
Joseph P. Albano ◽  
William B. Miller

Marigold (Tagetes erecta L.) grown hydroponically in an irradiated nutrient solution containing FeDTPA had root ferric reductase activity 120% greater, foliar Fe level 33% less, and foliar Mn level 90% greater than did plants grown in an identical, nonirradiated solution, indicating that the plants growing in the irradiated solution were responding to Fe-deficiency stress with physiological reactions associated with Fe efficiency. The youngest leaves of plants grown in the irradiated solution had symptoms of Mn toxicity (interveinal chlorosis, shiny-bronze necrotic spots, and leaf deformation). Plants grown in irradiated solution in which the precipitated Fe was replaced with fresh Fechelate were, in general, no different from those grown in the nonirradiated solution. Chemical name used: ferric diethylenetriaminepentaacetic acid (FeDTPA).


1946 ◽  
Vol 36 (2) ◽  
pp. 80-86 ◽  
Author(s):  
Rowland Marcus Woodman ◽  
Delphine Ainslie Johnson

Statistical experiments have been carried out as pot cultures in the greenhouse, with sand and soil as the aggregates (nutrients being supplied to both aggregates in the form of nutrient solutions), on the growth of the two vegetables turnip and spring cabbage to the stage of maturity usual in actual practice. With full nutrients, the soil, possibly because of such factors as its nutrient reserves, its physical properties, and its capacity for retaining certain nutritional elements supplied, was superior to the sand as judged by yields of fresh and dry matter for tops and whole plants of both vegetables, and roots for the turnip, thus including the edible portion ofboth plants; the (true) root of the cabbage, however, yielded more in the sand under these conditions. Similar results were obtained even when the concentrations of the nutrients for the soil were only half those in the full nutrient solution applied to the sand, so that it may be stated that fresh soil is greatly superior to sand under equal conditions as an aggregate in the growth of vegetables with nutrient solutions.


1946 ◽  
Vol 36 (2) ◽  
pp. 87-94 ◽  
Author(s):  
Rowland Marcus Woodman ◽  
Delphine Ainslie Johnson

Experiments are described in which the ‘once-used’ soils left over from previous culture experiments were employed as aggregates in the growth of vegetables. It was demonstrated that sand with full nutrients was superior to ‘once-used’ soil with water only, but that ‘once-used’ soil supplied with the full quota of soluble nitrogen was superior to the sand with full nutrients. The root of the cabbage in sand was an exception, and a possible explanation was that sand as aggregate favoured true root formation, while soil favoured the formation of tops. The ‘once-used’ soil in these experiments deteriorated in physical propertes owing to the conditions of the experiment, which included the use of nitrogen as sodium nitrate, possibly owing to the tendency to the formation of sodium clay; it is argued that a judicious choice of fertilizers and/or the use of flocculating electrolytes should overcome such tendencies.


1972 ◽  
Vol 52 (4) ◽  
pp. 575-581 ◽  
Author(s):  
E. G. BEAUCHAMP ◽  
N. ROSSI

The influence of three Fe levels (0.1, 0.5, 2.5 ppm) and four Mn levels (0.005, 0.05, 0.5, 1.0 ppm) in all combinations in nutrient solutions were studied in the greenhouse with barley plants. At the anthesis stage, the dry matter yield increased with increasing Fe supply when the Mn level was below optimum (0.005 ppm) or approximately optimum (0.05 ppm). At maturity, the yields of kernels and straw increased with increasing Fe supply regardless of the Mn level. Mn deficiency symptoms were evident at the lowest Mn level and were not influenced by the Fe supply. Dry matter yields at the two highest Mn levels were lower than those at the 0.05-ppm Mn level at both the anthesis and mature stages. Mn toxicity symptoms were evident only at the highest Mn level. The critical Mn concentration in the four uppermost leaf blades associated with reduced dry matter yield was approximately 15 ppm regardless of the Fe supply. The critical Mn concentration in leaves plus stem was slightly lower than that for leaf blades only. Similar results were obtained with two barley cultivars. It was concluded that increasing the Fe supply does not reduce Mn availability or concentration in barley plants when the Mn supply ranges from below to approximately optimum but may do so when the Mn supply is above optimum.


1969 ◽  
Vol 30 (4) ◽  
pp. 197-250
Author(s):  
Francisco J. Ramírez-Silva

Pineapple plants were grown in nutrient solutions from uniform and healthy slips used as the propagating organ. The solutions were prepared with a mixture of macronutrient elements containing ammonia and nitrate nitrogen, potassium, phosphorus, magnesium, calcium, and sulfur. The solutions proved to be good for the growth of pineapples. Fourteen different treatments of the micronutriont elements: iron, manganese, boron, zinc, copper and aluminum, were used in triplicate. Combinations of these elements were made in order to trace their effect, either toxic or beneficial, on pineapple plant growth and production, on root growth, on flowering and fruiting, and on the quality of the fruit. The antidoting effect of iron against the chlorosis-producing action of manganese was also studied. Plants also were grown without adding micron atrient elements to the nutrient solution.


2007 ◽  
Vol 17 (2) ◽  
pp. 227-233 ◽  
Author(s):  
Alejandro R. Puerta ◽  
Suguru Sato ◽  
Yutaka Shinohara ◽  
Toru Maruo

In nutrient film technique (NFT) vegetable production, the use of low-concentration nutrient solutions might lead to a nutrient concentration gradient along the bed, which can translate into nonuniform plant growth. The authors modified a conventional NFT system (cNFT) and propose a modified NFT (mNFT) that enables the production of lettuce (Lactuca sativa) plants of uniform fresh weight along elongated cultural beds. Two experiments were carried out to compare the systems when long cultural beds are used (18 m) in terms of uniformity of plant and nutrient solution characteristics. The results indicated that fresh weight of plants in cNFT decreased as the distance from the nutrient inlet increased, whereas no such trend was observed in mNFT. Leaf nitrate concentration in mNFT was uniform, whereas it was higher near the outlet of cNFT. Ascorbic acid concentration was also uniform in mNFT, but it was found to be lower near the outlet of cNFT. During Expt. 2, the oxygen content along the bed decreased from inlet to outlet in cNFT; however, in mNFT, it remained relatively constant at all sampling positions. Regarding the concentration of the nutrient solution along beds, no significant differences were found between inlet and outlet in both systems. It is suggested that the lower concentration of oxygen found at the outlet of cNFT might have reduced nutrient uptake, thus attenuating the difference in concentration between inlet and outlet. The temperatures of the nutrient solution along mNFT during Expt. 2 tended to be slightly lower than those of cNFT. However, temperatures were still too high and plant growth was negatively affected. The results of this study demonstrate that plants of uniform size and quality can be achieved in long cultural beds (up to 18 m long) supplied with a low-concentration fertilizer solution by using the proposed mNFT.


2015 ◽  
Vol 44 (1) ◽  
pp. 3-13
Author(s):  
J. Stabrowska ◽  
J. Kozłowska

In all the experiments the best development of tomato plants was observed when nutrient solutions containing 1/3 of full doses of potassium were applied (i.e. when the N : K ratio = 0.84). On the other hand, the poorest development of plants was observed in combinations with 1/100 of the full potassium dose. Tenfold doses of potassium added to the nutrient solution de-pressed markedly plant growth, particularly at pH 7.6. The supply of potassium in the nutrient solution was correlated with the nitrogen, potassium and calcium amounts absorbed by the plants.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 845F-845
Author(s):  
Joseph P. Albano ◽  
William B. Miller

Iron chelate photodegradation is a problem in tissue culture where limited soluble Fe in agar reduces callus tissue growth. Our objectives were to determine if Fe chelate photodegradation occurs in commercial fertilizers used in greenhouse plant production and, if so, the effects on plant Fe acquisition. Commercial 20N–10P–20K soluble fertilizers containing Fe-EDTA were prepared as 100x stocks based on a 100 mg N/liter (1x) concentration. A modified Hoagland's solution with Fe-DTPA was prepared as a 10x stock based on a 200 mg N/liter (1x) concentration. Samples then were kept in darkness or were irradiated with 500 μmol·m–2·s–1 from fluorescent and incandescent sources for ≤240 hours. Soluble Fe in the irradiated commercial fertilizer solutions decreased 85% in 240 h. Soluble Fe in the Hoagland's solution, prepared in the lab, decreased 97% in 72 h. There was no loss in soluble Fe in any dark-stored treatment; demonstrating photodegradation of Fe-chelates under commercial settings. Excised roots of marigold (Tagetes erecta L.), grown hydroponically in the irradiated solutions, had Fe(III)-DTPA reductase activity 2 to 6 times greater than roots of plants grown in solutions kept in darkness. Plants growing in irradiated solutions acidified the rhizosphere more than plants growing in solutions kept dark. The increase in Fe reductase activity and rhizosphere acidification are Fe-efficiency reactions of marigold responding to the photodegradation of Fe-chelates and subsequent decrease in soluble Fe in both commercial fertilizers and lab-prepared nutrient solution.


HortScience ◽  
2003 ◽  
Vol 38 (6) ◽  
pp. 1104-1107 ◽  
Author(s):  
Maritza Ojeda ◽  
Bruce Schaffer ◽  
Frederick S. Davies

Root ferric chelate reductase (FCR) activity in Annona glabra L. (pond apple), native to subtropical wetland habitats and Annona muricata L. (soursop), native to non-wetland tropical habitats, was determined under Fe-sufficient and Fe-deficient conditions. Four-month-old seedlings of each species were grown hydroponically in a complete nutrient solution containing 90 μm Fe or no Fe. The degree of tolerance of Fe deficiency was evaluated by measuring root FCR activity, chlorophyll and Fe concentration in recently matured leaves and plant growth. Root FCR activity was higher in soursop than in pond apple in the nutrient solution with Fe. However, there were no differences in root FCR activity between species under Fe-deficient conditions. Root FCR activity in pond apple and soursop was not induced in the absence of Fe. Leaf chlorophyll index and Fe concentration, and dry weights of pond apple were lower when plants were grown without Fe compared to plants grown with Fe. Leaves of pond apple grown without Fe became chlorotic within 3 weeks. Lack of Fe decreased the chlorophyll index and Fe concentration in young leaves less in soursop than in pond apple. In contrast, the Fe level in the nutrient solution had no effect on dry weights of soursop. The rapid development of leaf chlorosis and low FCR activity of pond apple may be due to its native origin in wetland areas where there is sufficient soluble Fe for plant growth and development.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1161f-1161
Author(s):  
John D. Lea-Cox ◽  
Irwin E. Smith

Pine bark is utilized as a substrate in citrus nurseries in South Africa. The Nitrogen (N) content of pine bark is inherently low, and due to the volubility of N, must be supplied on a continual basis to ensure optimum growth rates of young citrus nursery stock. Three citrus rootstock (rough lemon, carrizo citrange and cleopatra mandarin) showed no difference in stem diameter or total dry mass (TDM) when supplied N at concentrations between 25 and 200 mg ·l-1 N in the nutrient solution over a 12 month growing period. Free leaf arginine increased when N was supplied at 400 mg·l-1 N. The form of N affected the growth of rough lemon. High NH4-N:NO3-N (75:25) ratios decreased TDM when Sulfur (S) was absent from the nutrient solution, but not if S was present. Free arginine increased in leaves at high NH4-N (No S) ratios, but not at high NH4-N (S supplied) ratios. Free leaf arginine was correlated with free leaf ammonia. These results have important implications for reducing the concentration of N in nutrient solutions used in citrus nurseries and may indicate that higher NH4-N ratios can be used when adequate S is also supplied.


Sign in / Sign up

Export Citation Format

Share Document