scholarly journals 345 Seed Germination of Inland Saltgrass

HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 502E-502
Author(s):  
Judy Harrington ◽  
Scott Reid

Distichlis spicata var. stricta (Torrey) Beetle is a native grass that tolerates salt, high pH, and some heavy metals. It has been proposed for use in several challenging environments, including mine spoils and salt-impacted areas of golf courses, but its widespread use has been hindered by several factors, one of which is seed dormancy. Dormancy appears to be coat-imposed and can be overcome by scarification in relatively young seed lots. Thirteen-year-old seeds germinated better without scarification. Seeds were tested at several constant and alternating temperatures. Temperatures around 30 °C seemed to give the highest percentage germination, approaching the viability that was shown by tetrazolium chloride tests for each seed lot. Alternating temperatures increased the germination of unscarified seeds but not as much as scarification did. Light appears to be unnecessary for germination.

2010 ◽  
Vol 62 (10) ◽  
pp. 2459-2466 ◽  
Author(s):  
Han Peng ◽  
Wu Geng ◽  
Wu Yong-quan ◽  
Li Mao-teng ◽  
Xiang Jun ◽  
...  

In this paper, we report the effects of heavy metals (HMs) (cadmium and mercury) on seed germination and seedling growth of Phragmites australis and Triarrhena sacchariflora, which are the two main typical emerging plants in Hongze Lake wetland. The results showed that there was a reduction in germination percentage, germination index and seedling length as HM concentration in the growing media increased for both treatments. The effect of HMs toxicity on seed germination and seedling growth of T. sacchariflora was more obvious than of P. australis. At the stage of seed germination, P. australis and T. sacchariflora were sensitive to Hg2 +  and Cd2 + , respectively, and Hg2 +  was more toxic than Cd2 +  at the stage of seedling growth. The effect of HMs toxicity is not invariable during plant growth. Compared to the stage of seedling growth, P. australis and T. sacchariflora are more susceptible to HMs at the stage of seed germination. In addition, we calculated the ecological thresholds of P. australis to Cd and Hg are 19.32 and 1.08 mg kg−1, and that of T. sacchariflora to Cd is 4.62 mg kg−1 based on the lab simulation. The results also indicated that the species of P. australis is more tolerant than T. sacchariflora to the HMs and is a better candidate for restoration in Hongze Lake wetland ecosystem.


Bragantia ◽  
2013 ◽  
Vol 72 (3) ◽  
pp. 199-207 ◽  
Author(s):  
Camila Kissmann ◽  
Gustavo Habermann

In this descriptive paper, we described germination responses of Styrax pohlii, S. camporum and S. ferrugineus seeds at 5, 10, 15, 20, 25, 30, 35, 40 and 45 °C. We also assessed the percentage germination (%G) of S. pohlii seeds with different seed water contents because, as a forest species, it seems to have recalcitrant seed behavior. Intrigued by the capacity of seeds of this species to germinate directly from puddles formed on poorly drained soils of riparian forests, where it typically occurs, we also tested the effect of de-pulping fruits on germination of S. pohlii seeds under hypoxia and normoxia conditions. In addition, we checked whether distinct concentrations of gibberellic acid (GA3) could break S. ferrugineus seed dormancy, a typical seed behavior of Cerrado species. No germination occurred at 5, 40 and 45 °C, regardless of the species. The optimal temperature for germination was 20 °C for S. pohlii and 25 °C for S. camporum. However, S. ferrugineus seeds showed a very low %G, regardless of the temperature, and GA3 could not consistently break possible physiological seed dormancy. For S. pohlii seeds, the higher the seed desiccation the lower the %G, and fruit pulp removal showed to be essential for seed germination. S. pohlii seeds germinated independently of oxygenation conditions.


2016 ◽  
Vol 5 (11) ◽  
pp. 5016 ◽  
Author(s):  
K. B. Khare* ◽  
Loeto D. ◽  
Wale K. ◽  
Salani M.

Seeds of three cowpea cultivars namely Black eye, ER 7 and Tswana obtained from the Department of Agriculture Research, Gaborone were tested for the presence of seed-borne fungi, and their possible control in vitro using locally available fungicides. Four hundred fifty seeds of each cultivar of cowpea were disinfected with 2% sodium hypochlorite solution for 10 min and washed three times with sterile distilled water before placing them in PDA plates (5 seeds/9 cm Petri plate), incubated at 22±2o C for 12 hour each under continuous light and dark. A total of eight fungi were detected from seeds of cowpea. These were Aspergillus flavus, A. niger, Cylindrocarpon sp., Fusarium equisiti, F. oxyaporum, Penicillium chyrosogenum, Rhizopus oligosporus and R. stolonifer. Rhizopus spp. were dominant fungi recovered from seeds, followed by Penicillium, Aspergillus, Fusarium and Cylindrocarpon. The fungi detected resulted in decay and rotting of seeds, and thereby reducing percentage germination of seeds (22%, 37% and 63 % seed germination in Black eye, ER7 and Tswana varieties of cowpea respectively). Out of four fungicides tested, benlate, captan, dithane M 45 and chlorothalanil. Dithane M45 effectively controlled seed-borne fungi, and enhanced seed germination to an average of 86% (93% germination with no fungi detected in Tswana variety) as compared to chlorothalonile (79%), benlate and captan (77%) and un-treated seeds (45%). The fungal incidence was reduced to 2.3%, 4.3%, 5.3% and 5.3% when seeds were treated with dithane M-45, chlorothalonil, benlate and captan respectively as compared to 62% in non-treated seeds.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1765
Author(s):  
Wei Zhang ◽  
Lian-Wei Qu ◽  
Jun Zhao ◽  
Li Xue ◽  
Han-Ping Dai ◽  
...  

The innate physiological dormancy of Tulipa thianschanica seeds ensures its survival and regeneration in the natural environment. However, the low percentage of germination restricts the establishment of its population and commercial breeding. To develop effective ways to break dormancy and improve germination, some important factors of seed germination of T. thianschanica were tested, including temperature, gibberellin (GA3) and/or kinetin (KT), cold stratification and sowing depth. The percentage of germination was as high as 80.7% at a constant temperature of 4 °C, followed by 55.6% at a fluctuating temperature of 4/16 °C, and almost no seeds germinated at 16 °C, 20 °C and 16/20 °C. Treatment with exogenous GA3 significantly improved the germination of seeds, but KT had a slight effect on the germination of T. thianschanica seeds. The combined treatment of GA3 and KT was more effective at enhancing seed germination than any individual treatment, and the optimal hormone concentration for the germination of T. thianschanica seeds was 100 mg/L GA3 + 10 mg/L KT. In addition, it took at least 20 days of cold stratification to break the seed dormancy of T. thianschanica. The emergence of T. thianschanica seedlings was the highest with 82.4% at a sowing depth of 1.5 cm, and it decreased significantly at a depth of >3.0 cm. This study provides information on methods to break dormancy and promote the germination of T. thianschanica seeds.


2021 ◽  
Vol 22 (3) ◽  
pp. 1357
Author(s):  
Ewelina A. Klupczyńska ◽  
Tomasz A. Pawłowski

Environmental conditions are the basis of plant reproduction and are the critical factors controlling seed dormancy and germination. Global climate change is currently affecting environmental conditions and changing the reproduction of plants from seeds. Disturbances in germination will cause disturbances in the diversity of plant communities. Models developed for climate change scenarios show that some species will face a significant decrease in suitable habitat area. Dormancy is an adaptive mechanism that affects the probability of survival of a species. The ability of seeds of many plant species to survive until dormancy recedes and meet the requirements for germination is an adaptive strategy that can act as a buffer against the negative effects of environmental heterogeneity. The influence of temperature and humidity on seed dormancy status underlines the need to understand how changing environmental conditions will affect seed germination patterns. Knowledge of these processes is important for understanding plant evolution and adaptation to changes in the habitat. The network of genes controlling seed dormancy under the influence of environmental conditions is not fully characterized. Integrating research techniques from different disciplines of biology could aid understanding of the mechanisms of the processes controlling seed germination. Transcriptomics, proteomics, epigenetics, and other fields provide researchers with new opportunities to understand the many processes of plant life. This paper focuses on presenting the adaptation mechanism of seed dormancy and germination to the various environments, with emphasis on their prospective roles in adaptation to the changing climate.


Horticulturae ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 490
Author(s):  
Saeng Geul Baek ◽  
Jin Hyun Im ◽  
Myeong Ja Kwak ◽  
Cho Hee Park ◽  
Mi Hyun Lee ◽  
...  

This study aimed to determine the type of seed dormancy and to identify a suitable method of dormancy-breaking for an efficient seed viability test of Lysimachia coreana Nakai. To confirm the effect of gibberellic acid (GA3) on seed germination at different temperatures, germination tests were conducted at 5, 15, 20, 25, 20/10, and 25/15 °C (12/12 h, light/dark), using 1% agar with 100, 250, and 500 mg·L−1 GA3. Seeds were also stratified at 5 and 25/15 °C for 6 and 9 weeks, respectively, and then germinated at the same temperature. Seeds treated with GA3 demonstrated an increased germination rate (GR) at all temperatures except 5 °C. The highest GR was 82.0% at 25/15 °C and 250 mg·L−1 GA3 (4.8 times higher than the control (14.0%)). Additionally, GR increased after cold stratification, whereas seeds did not germinate after warm stratification at all temperatures. After cold stratification, the highest GR was 56.0% at 25/15 °C, which was lower than the GR observed after GA3 treatment. We hypothesized that L. coreana seeds have a non-deep physiological dormancy and concluded that 250 mg·L−1 GA3 treatment is more effective than cold stratification (9 weeks) for L. coreana seed-dormancy-breaking.


Sign in / Sign up

Export Citation Format

Share Document