scholarly journals 155 Fertilizer Concentration Affects Whole Plant CO2 Exchange and Growth of Subirrigated Pansies

HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 416D-416
Author(s):  
Marc van Iersel ◽  
Jong-Goo Kang

Subirrigation is an economically attractive irrigation method for producing bedding plants. Because excess fertilizer salts are not leached from the growing medium, salts can accumulate in the growing medium. Fertilizer guidelines developed for overhead irrigation may not be appropriate for subirrigation systems. Our objective was to quantify the effect of the fertilizer concentration (N at 0, 135, 285, and 440 mg·L–1) on whole-plant CO2 exchange and growth of subirrigated pansies. Whole plant CO2 exchange rate (net photosynthesis and dark respiration) was measured once every 10 min for 31 days. Whole-plant photosynthesis, dark respiration, and carbon use efficiency increased during the experiment. Fertilizer concentration started to affect the growth rate of the plants after approximately 7 days. Maximum photosynthesis and growth were achieved with N at about 280 mg·L–1 in the fertilizer solution [electrical conductivity = 2 dS·m–1]. Growth was reduced by ≈10% when the plants were fertilized with N at 135 and 440 mg·L–1 compared to 280 mg·L–1. Growth of plants watered without any fertilizer was greatly reduced, and plants showed symptoms of N and K deficiency. The size of the root system decreased and the shoot: root ratio increased with increasing fertilizer concentration, but the size of the root system was adequate in all treatments. These results indicate that subirrigated pansies can tolerate a wide range of fertilizer concentrations with relatively little effect on plant growth.

1991 ◽  
Vol 71 (1) ◽  
pp. 235-243 ◽  
Author(s):  
J. Jiao ◽  
M. J. Tsujita ◽  
B. Grodzinski

The effect of temperature on net CO2 exchange of source and sink tissues of the flowering shoots and of whole plants was examined using single-stemmed Samantha roses. At all stages of shoot development, the optimal temperature range for whole-plant carbon (C) gain at saturating irradiance and ambient CO2 level was between 20° and 25 °C, narrower than the temperature range for optimal leaf net photosynthesis. Dark respiration increased more dramatically than photosynthesis with temperatures between 15 and 35 °C. At 25 °C, C loss due to respiration from the flower bud at colour bud stage accounted for 45% of the C loss of the flowering shoot. At low irradiance levels (e.g. 200 μmol m−2 s−1) whole-plant net photosynthesis was greater at 16° than at 22 °C because of a greater reduction in respiration. Lowering the night temperature from 27 to 17 °C also increased daily C gain due to a reduction in the C lost at night. Whole-plant net photosynthesis of plants grown and measured at enriched (1000 ± 100 μL L−1) CO2 was greater than that of plants grown and measured at ambient (350 ± 50 μL L−1) level at temperatures between 15° and 35 °C. Furthermore, the optimal temperatures for whole-plant net photosynthesis in CO2 enrichment was higher than at ambient CO2 level. Key words: Dark respiration, net photosynthesis, Rosa hybrida, temperature


HortScience ◽  
2000 ◽  
Vol 35 (2) ◽  
pp. 250-253 ◽  
Author(s):  
Marc van Iersel

Poinsettias (Euphorbia pulcherrima Willd. ex Klotzsch) were grown in pots filled with 1.5 L of soilless growing medium and subirrigated daily with a fertilizer solution containing N at 210 mg·L-1 [electrical conductivity (EC) = 1.5 dS·m-1] for 128 days. After production, plants were placed in a whole-plant photosynthesis system and the effects of applying different volumes of water (0, 0.75, 1.5, and 3 L) to the top of the pots were quantified. Leaching with 0.75, 1.5, or 3 L of water reduced the EC in the top and middle layers of the growing medium. Applications of 0.75 or 1.5 L of water significantly increased the EC in the bottom third of the pots, where most of the root growth occurred. However, even in these treatments the EC in the bottom layer was only 2.6 dS·m-1 (saturated medium extraction method), which is well within the recommended range. The 0.75- and 1.5-L treatments also reduced the respiration rate of the plants by 20%, but none of the treatments had a significant effect on the photosynthesis of the plants. Regression analysis indicated a negative correlation between the EC of the bottom layer of the growing medium and dark respiration, while the EC of the top and middle layer had no significant effect on respiration. Although top watering can increase the EC in the bottom layer of the growing medium, this effect is unlikely to be large enough to cause significant plant stress and damage.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 511d-511
Author(s):  
Marc W. van Iersel ◽  
Orville M. Lindstrom

Photosynthesis and respiration temperature-response curves are useful in predicting the ability of plants to perform under different environmental conditions. Whole crop CO2 exchange of two groups of magnolia `Greenback' plants was measured over a 26 °C temperature range. Net photosynthesis (Pnet) increased from 2 to 17% C and decreased again at higher temperatures. The Q10 for Pnet decreased from ≈4 at 6 °C to 0.5 at 24 °C. The decrease in Pnet at temperatures over 17 °C was caused by a rapid increase in dark respiration (Rdark) with increasing temperature. The Q10 for Rdark was estimated by fitting an exponential curve to data, resulting in a temperature-independent Q10 of 2.8. Gross photosynthesis (Pgross), estimated as the sum of Rdark and Pnet, increased over the entire temperature range (up to 25 °C). The Q10 for Pgross decreased with increasing temperature, but remained higher than 1. The data suggest that high respiration rates may be the limiting factor for growth of magnolia exposed to high temperatures, since it may result in a net carbon loss from the plants. At temperatures below 5 °C, both Pnet and Rdark become low and the net CO2 exchange of the plants would be expected to be minimal.


2002 ◽  
Vol 127 (3) ◽  
pp. 423-429 ◽  
Author(s):  
Marc W. van Iersel ◽  
Jong-Goo Kang

To determine the effect of fertilizer concentration on plant growth and physiology, whole-plant C exchange rates of pansies (Viola ×wittrockiana Gams.) subirrigated with one of four fertilizer concentrations were measured over 30 days. Plants were watered with fertilizer solutions with an electrical conductivity (EC) of 0.15, 1.0, 2.0, or 3.0 dS·m-1 (N at 0, 135, 290, or 440 mg·L-1, respectively). Plants watered with a fertilizer solution with an EC of 2 dS·m-1 had the highest shoot dry weight (DW), shoot to root ratio, leaf area, leaf area ratio (LAR), and cumulative C gain at the end of the experiment compared to those watered with a solution with a higher or lower EC. Shoot tissue concentrations of N, P, K, S, Ca, Fe, Na, and Zn increased linearly with increasing fertilizer concentration. A close correlation between final DW of the plants and the measured cumulative C gain (CCG) (r2 = 0.98) indicated that the C exchange rates were good indicators of plant growth. There were quadratic relationships between fertilizer EC and gross photosynthesis, net photosynthesis, and dark respiration, starting at 13, 12, and 6 days after transplanting, respectively. Although plants fertilized with a fertilizer solution with an EC of 2 dS·m-1 had the highest C exchange rates, the final differences in shoot DW and CCG among ECs of 1.0, 2.0, and 3.0 dS·m-1 were small and it appears that pansies can be grown successfully with a wide range of fertilizer concentrations. Plants with a high LAR also had higher DW, suggesting that increased growth was caused largely by increased light interception. A detrimental effect of high fertilizer concentrations was that it resulted in a decrease in root DW and a large increase in shoot to root ratio.


1999 ◽  
Vol 124 (3) ◽  
pp. 234-238 ◽  
Author(s):  
Marc van Iersel

Uprooting and transplanting seedlings can cause root damage, which may reduce water and nutrient uptake. Initiation of new roots and rapid elongation of existing roots may help minimize the negative effects of transplant shock. In this study, seedlings with four true leaves were transplanted into diatomaceous earth and the plants were transferred to a growth chamber, where they were treated with NAA (0, 0.025, 0.25, and 2.5 mg·L-1; 36 mL/plant). The effects of drenches with various amounts of 1-naphthaleneacetic acid (NAA) on the posttransplant CO2 exchange rate of vinca [Catharanthus roseus (L.) G. Don] were quantified. Whole-plant CO2 exchange rate of the plants was measured once every 20 minutes for a 28 day period. Seedlings treated with 0.025 or 0.25 mg·L-1 recovered from transplant shock more quickly than plants in the 0 and 2.5 mg·L-1 treatments. Naphthaleneacetic acid drenches containing 0.025 or 0.25 mg·L-1 increased whole-plant net photosynthesis (Pnet) from 10 days, dark respiration (Rdark) from 12 days, and carbon use efficiency (CUE) from 11 days after transplanting until the end of the experiment. The increase in CUE seems to have been the result of the larger size of the plants in these two treatments, and thus an indirect effect of the NAA applications. These differences in CO2 metabolism among the treatments resulted in a 46% dry mass increase in the 0.025 mg·L-1 treatment compared to the control, but shoot-root ratio was not affected. The highest rate of NAA (2.5 mg·L-1) was slightly phytotoxic and reduced the growth rate of the plants.


2019 ◽  
Vol 144 (3) ◽  
pp. 201-208
Author(s):  
Krishna Nemali ◽  
Marc W. van Iersel

Bedding plants are at increased risk for exposure to drought stress during production because they are grown in small containers. Physiological mechanisms of bedding plants at leaf and cellular scales that regulate whole-plant photosynthesis under drought conditions are not well understood. This information can be useful for screening bedding plant cultivars with improved drought-tolerance and generate guidelines to mitigate drought stress during production. We subjected drought-sensitive salvia (Salvia splendens ‘Bonfire Red’) and drought-tolerant vinca (Catharanthus roseus ‘Cooler Peppermint’) to gradual drought stress inside whole-plant gas exchange chambers. Substrate water content (Θ), whole-plant net photosynthesis (Pn_avg), whole-plant respiration (Rd_avg), and daily carbon gain (DCG) were measured continuously, whereas stomatal conductance (gS) to water, leaf water (ΨL), osmotic (ΨS), and turgor (ΨP) potentials were measured at the start and end of the drought phase. In addition, ΨS was measured before exposure to stress and after thoroughly rehydrating plants. Dark-adapted quantum efficiency (dark-adapted ΦPSII) was measured after rehydrating plants. The results indicated that, at whole-plant scale, vinca continued to uptake water at lower Θ levels than the Θ level that resulted in wilting of salvia. There were no differences in Rd_avg; however, Pn_avg and DCG of salvia decreased at a higher Θ level than that of vinca. This indicated that salvia experienced drought stress at a higher Θ level than did vinca. At the leaf scale, there were no differences in ΨL; however, a more negative ΨS (P = 0.06) and significantly higher ΨP were observed in vinca (compared to salvia) under drought conditions. In addition, ΨS was not different between species before exposure to drought, whereas ΨS of rehydrated leaves after exposure to drought in vinca was significantly lower than that in salvia. Moreover, ΨS of rehydrated leaves after exposure to drought was significantly lower than that observed before exposure to drought in vinca. This indicated osmotic adjustment (OA) in vinca under drought conditions. Dark-adapted ΦPSII was lower in salvia than in vinca after exposure to drought, indicating damage to photosynthetic mechanisms. Our results suggested that increased OA likely helped to maintain higher ΨP under drought conditions and continuation of water uptake at lower Θ in vinca compared to salvia. In addition, healthier photosynthetic mechanisms of vinca (compared to salvia) under drought conditions likely resulted in its higher Pn_avg and DCG at lower Θ. Screening for OA and dark-adapted ΦPSII may be useful for developing drought-tolerant bedding plant cultivars.


HortScience ◽  
2006 ◽  
Vol 41 (1) ◽  
pp. 124-130 ◽  
Author(s):  
Stephanie E. Burnett ◽  
Marc W. van Iersel ◽  
Paul A. Thomas

French marigold (Tagetes patula L. `Boy Orange') was grown in a peat-based growing medium containing different rates (0, 15, 20, 30, 42, or 50 g·L–1) of polyethylene glycol 8000 (PEG-8000) to determine if PEG-8000 would reduce seedling height. Only 28% to 55% of seedlings treated with 62, 72, or 83 g·L–1 of PEG-8000 survived, and these treatments would be commercially unacceptable. Marigolds treated with the remaining concentrations of PEG-8000 had shorter hypocotyls, and were up to 38% shorter than nontreated controls at harvest. Marigold cotyledon water (ψw), osmotic (ψs), and turgor (ψp) potentials were significantly reduced by PEG-8000, and ψp was close to zero for all PEG-treated seedlings 18 days after seeding. Whole-plant net photosynthesis, whole-plant dark respiration, and net photosynthesis/leaf area ratios were reduced by PEG-8000, while specific respiration of seedlings treated with PEG-8000 increased. Marigolds treated with concentrations greater than 30 g·L–1 of PEG-8000 had net photosynthesis rates that were close to zero. Fourteen days after transplanting, PEG-treated marigolds were still shorter than nontreated seedlings and they flowered up to 5 days later. Concentrations of PEG from 15 to 30 g·L–1 reduced elongation of marigold seedlings without negatively affecting germination, survival, or plant quality. It appears that marigold seedlings were shorter because of reduced leaf ψp and reductions in net photosynthesis.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 576c-576
Author(s):  
E.D. Leonardos ◽  
M.J. Tsujita ◽  
B. Grodzinski ◽  
T.J. Blom

Gas exchange (net photosynthesis Pn, dark respiration, transpiration, and stomatal resistance) of `Jaqueline' Alstroemeria, grown in pots in a greenhouse, were measured. Measurements were made under laboratory conditions using an open-flow infrared gas analysis system for leaf studies, and a semi-closed computer controlled whole plant photosynthesis system for whole plant studies. Apical fully expanded leaves on non-flowering and flowering (at two stages) shoots had similar photosynthetic responses in respect to photosynthetically active radiation (PAR) and to CO2 concentration. Light saturation occurred at 600 umol/m2/s PAR with maximum leaf Pn rates ranging from 9 to 11 umol CO2/m2/s. CO2 saturation was estimated at approximately 1100 to 1200 ppm with maximum leaf Pn rates from 17 to 22 umol CO2/m2/s. Whole plant Pn rates increased with increased PAR. Maximum rates 4 to 5 umol CO2/m2/s (half that of individual leaves) occurred at approximately 1000 to 1100 umol/m2/s PAR. CO2 saturation was estimated at 1100 to 1200 ppm, with maximum whole plant Pn rates ranging from 7 to 8 umol CO2/m2/s. These data will be discussed in relation to respiration and mutual shading at the leaf canopy.


2003 ◽  
Vol 128 (1) ◽  
pp. 100-106 ◽  
Author(s):  
Marc W. van Iersel

Bedding plants are exposed to a wide range of environmental conditions, both during production and in the landscape. This research compared the effect of short-term temperature changes on the CO2 exchange rates of four popular bedding plants species. Net photosynthesis (Pnet) and dark respiration (Rdark) of geranium (Pelargonium ×hortorum L.H. Bail.), marigold (Tagetes patula L.), pansy (Viola ×wittrockiana Gams.), and petunia (Petunia ×hybrida Hort. Vilm.-Andr.) were measured at temperatures ranging from 8 to 38 °C (for Pnet) and 6 to 36 °C (for Rdark). Net photosynthesis of all species was maximal at 14 to 15 °C, while Rdark of all four species increased exponentially with increasing temperature. Gross photosynthesis (Pgross) was estimated as the sum of Pnet and Rdark, and was greater for petunia than for the other three species. Gross photosynthesis was less sensitive to temperature than either Pnet or Rdark, suggesting that temperature effects on Pnet were caused mainly by increased respiration at higher temperatures. Gas exchange-temperature response curves were not useful in determining the heat tolerance of these species. There were significant differences among species in the estimated Rdark at 0 °C and the Q10 for Rdark. Differences in the Q10 for Rdark were related to growth rate and plant size. Large plants had a greater Q10 for Rdark, apparently because these plants had a higher ratio of maintenance to growth respiration than small plants. The Q10 of the maintenance respiration coefficient was estimated from the correlation between the Q10 and relative growth rate, and was found to be 2.5 to 2.6.


1991 ◽  
Vol 71 (1) ◽  
pp. 253-261 ◽  
Author(s):  
J. Jiao ◽  
M. J. Tsujita ◽  
B. Grodzinski

A daily growth model was developed for Samantha roses based on nondestructive measurements of whole-plant net CO2 exchange rate (NCER) under various aerial environmental conditions. Irradiance, CO2 concentration, and temperature accounted for 70, 20, and 5%, respectively, of the variance in whole-plant net photosynthesis explainable by a second-order polynomial model (R2 = 0.86). The predicted optimal temperatures for whole-plant net photosynthesis increased from 19 to 24 °C with increasing irradiance from 100 to 1200 μmol m−2 s−1 and CO2 concentration from 350 to 1500 μL L−1. Dark respiration rate increased exponentially with temperature and could be predicted by the Arrhenius equation. Even though respiratory carbon (C) loss at night increased linearly with daytime C gain, daily C gain (AC) was still proportional to daytime net photosynthesis. The relative contribution of irradiance (100–1200 μmol m−2s−1), day length (8–16 h), CO2 concentration (350–1500 μL L−1), day temperature (15–30 °C), and night temperature (15–25 °C) to plant daily growth was 64, 31, 4, 0.3, and 0.7%, respectively. Key words: Carbon balance, environment, modelling, photosynthesis, respiration, Rosa hybrida


Sign in / Sign up

Export Citation Format

Share Document