scholarly journals Short-term Temperature Change Affects the Carbon Exchange Characteristics and Growth of Four Bedding Plant Species

2003 ◽  
Vol 128 (1) ◽  
pp. 100-106 ◽  
Author(s):  
Marc W. van Iersel

Bedding plants are exposed to a wide range of environmental conditions, both during production and in the landscape. This research compared the effect of short-term temperature changes on the CO2 exchange rates of four popular bedding plants species. Net photosynthesis (Pnet) and dark respiration (Rdark) of geranium (Pelargonium ×hortorum L.H. Bail.), marigold (Tagetes patula L.), pansy (Viola ×wittrockiana Gams.), and petunia (Petunia ×hybrida Hort. Vilm.-Andr.) were measured at temperatures ranging from 8 to 38 °C (for Pnet) and 6 to 36 °C (for Rdark). Net photosynthesis of all species was maximal at 14 to 15 °C, while Rdark of all four species increased exponentially with increasing temperature. Gross photosynthesis (Pgross) was estimated as the sum of Pnet and Rdark, and was greater for petunia than for the other three species. Gross photosynthesis was less sensitive to temperature than either Pnet or Rdark, suggesting that temperature effects on Pnet were caused mainly by increased respiration at higher temperatures. Gas exchange-temperature response curves were not useful in determining the heat tolerance of these species. There were significant differences among species in the estimated Rdark at 0 °C and the Q10 for Rdark. Differences in the Q10 for Rdark were related to growth rate and plant size. Large plants had a greater Q10 for Rdark, apparently because these plants had a higher ratio of maintenance to growth respiration than small plants. The Q10 of the maintenance respiration coefficient was estimated from the correlation between the Q10 and relative growth rate, and was found to be 2.5 to 2.6.

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 511d-511
Author(s):  
Marc W. van Iersel ◽  
Orville M. Lindstrom

Photosynthesis and respiration temperature-response curves are useful in predicting the ability of plants to perform under different environmental conditions. Whole crop CO2 exchange of two groups of magnolia `Greenback' plants was measured over a 26 °C temperature range. Net photosynthesis (Pnet) increased from 2 to 17% C and decreased again at higher temperatures. The Q10 for Pnet decreased from ≈4 at 6 °C to 0.5 at 24 °C. The decrease in Pnet at temperatures over 17 °C was caused by a rapid increase in dark respiration (Rdark) with increasing temperature. The Q10 for Rdark was estimated by fitting an exponential curve to data, resulting in a temperature-independent Q10 of 2.8. Gross photosynthesis (Pgross), estimated as the sum of Rdark and Pnet, increased over the entire temperature range (up to 25 °C). The Q10 for Pgross decreased with increasing temperature, but remained higher than 1. The data suggest that high respiration rates may be the limiting factor for growth of magnolia exposed to high temperatures, since it may result in a net carbon loss from the plants. At temperatures below 5 °C, both Pnet and Rdark become low and the net CO2 exchange of the plants would be expected to be minimal.


1993 ◽  
Vol 20 (3) ◽  
pp. 251 ◽  
Author(s):  
DJ Connor ◽  
AJ Hall ◽  
VO Sadras

Photosynthesis-irradiance response curves and leaf nitrogen contents were measured weekly by destructive sampling over the life cycles of leaves 10, 15, 20 and 25 of sunflower plants (cv. Prosol 35) grown in large pots in the open under optimum conditions of temperature and high irradiance. Individual leaf responses were adequately described by a hyperbola of three parameters, viz. Pmax, the rate of photosynthesis in saturating irradiance; R, the rate of dark respiration adjusted for temperature (30�C); and ε, the apparent quantum efficiency of photosynthesis at low irradiance. Pmax (range 0-40 μmol CO2 m-2 s-1) and R (0-4 μmol CO2 m-2 s-1) were non-linearly related to nitrogen content per unit leaf area (NL) (range 0.3-2.9 g N m-2) across all leaf positions and for all leaf ages. ε (mean value 0.050 mol mol-1, s.e. 0.001) was independent of NL. The equations for net photosynthesis derived from pot studies were shown to explain (r2 =0.80) leaf photosynthesis in a crop of the same cultivar over a wide range of NL and irradiance.


2002 ◽  
Vol 127 (3) ◽  
pp. 423-429 ◽  
Author(s):  
Marc W. van Iersel ◽  
Jong-Goo Kang

To determine the effect of fertilizer concentration on plant growth and physiology, whole-plant C exchange rates of pansies (Viola ×wittrockiana Gams.) subirrigated with one of four fertilizer concentrations were measured over 30 days. Plants were watered with fertilizer solutions with an electrical conductivity (EC) of 0.15, 1.0, 2.0, or 3.0 dS·m-1 (N at 0, 135, 290, or 440 mg·L-1, respectively). Plants watered with a fertilizer solution with an EC of 2 dS·m-1 had the highest shoot dry weight (DW), shoot to root ratio, leaf area, leaf area ratio (LAR), and cumulative C gain at the end of the experiment compared to those watered with a solution with a higher or lower EC. Shoot tissue concentrations of N, P, K, S, Ca, Fe, Na, and Zn increased linearly with increasing fertilizer concentration. A close correlation between final DW of the plants and the measured cumulative C gain (CCG) (r2 = 0.98) indicated that the C exchange rates were good indicators of plant growth. There were quadratic relationships between fertilizer EC and gross photosynthesis, net photosynthesis, and dark respiration, starting at 13, 12, and 6 days after transplanting, respectively. Although plants fertilized with a fertilizer solution with an EC of 2 dS·m-1 had the highest C exchange rates, the final differences in shoot DW and CCG among ECs of 1.0, 2.0, and 3.0 dS·m-1 were small and it appears that pansies can be grown successfully with a wide range of fertilizer concentrations. Plants with a high LAR also had higher DW, suggesting that increased growth was caused largely by increased light interception. A detrimental effect of high fertilizer concentrations was that it resulted in a decrease in root DW and a large increase in shoot to root ratio.


1977 ◽  
Vol 4 (5) ◽  
pp. 713 ◽  
Author(s):  
EY Sambo ◽  
J Moorby ◽  
FL Milthorpe

Net CO2 uptake by soybean pods in the light was much less and output in darkness much greater than from equal areas of leaves. The net photosynthesis decreased, becoming negative, and dark respiration increased as seed filling progressed. The photochemical efficiency was the same but the diffusive resistance of pods was about twice and the internal resistance two to three times those of leaves. Fluxes into open deseeded pods were initially much greater than into intact pods but drying out of the tissue soon led to fluxes only about three times greater. From these measurements and light- and CO2-response curves of intact pods, estimates of gross photosynthesis, photorespiration and dark respiration of seeds and hulls were made. These indicated that seed reassimilated slightly more CO2 than they respired when young and about two-thirds thereof at a later stage. Hulls fixed about similar amounts but these were insufficient to prevent net effluxes from pods during the later stages of their development, even at irradiances of 190 W m-2. On a daily basis, direct uptake of CO2 made a negligible contribution to the total import of dry weight by the pod; nevertheless, photosynthesis in the seeds and hulls refixed some 50-70% of the CO2 respired by these tissues.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 416D-416
Author(s):  
Marc van Iersel ◽  
Jong-Goo Kang

Subirrigation is an economically attractive irrigation method for producing bedding plants. Because excess fertilizer salts are not leached from the growing medium, salts can accumulate in the growing medium. Fertilizer guidelines developed for overhead irrigation may not be appropriate for subirrigation systems. Our objective was to quantify the effect of the fertilizer concentration (N at 0, 135, 285, and 440 mg·L–1) on whole-plant CO2 exchange and growth of subirrigated pansies. Whole plant CO2 exchange rate (net photosynthesis and dark respiration) was measured once every 10 min for 31 days. Whole-plant photosynthesis, dark respiration, and carbon use efficiency increased during the experiment. Fertilizer concentration started to affect the growth rate of the plants after approximately 7 days. Maximum photosynthesis and growth were achieved with N at about 280 mg·L–1 in the fertilizer solution [electrical conductivity = 2 dS·m–1]. Growth was reduced by ≈10% when the plants were fertilized with N at 135 and 440 mg·L–1 compared to 280 mg·L–1. Growth of plants watered without any fertilizer was greatly reduced, and plants showed symptoms of N and K deficiency. The size of the root system decreased and the shoot: root ratio increased with increasing fertilizer concentration, but the size of the root system was adequate in all treatments. These results indicate that subirrigated pansies can tolerate a wide range of fertilizer concentrations with relatively little effect on plant growth.


1989 ◽  
Vol 67 (1) ◽  
pp. 167-176 ◽  
Author(s):  
D. S. Coxson ◽  
J. Lancaster

Response patterns of net photosynthesis and dark respiration are examined in two species of Stereocaulon: S. tomentosum Fr., from early successional pine forest communities of the southern Canadian Rockies, and S. virgatum Ach., an early colonizer in tropical cloud-forest environments. These responses, measured in both intact and dissected mat segments, are described in the context of the influence of morphological variations on patterns of water vapor transport. Saturation response curves are fitted to data, allowing description of maximal rates of both net photosynthesis and dark respiration, water contents at which rates are half maximal, maximal water efficiency, and moisture compensation points. In S. tomentosum the closed-canopy nature of the lichen mat profile results in the development of a distinct shade ecotype in lower thallus segments. This canopy profile also impedes water vapor transport from within the mat profile, creating a more mesic microclimate for photobionts located at depth within the lichen mat. This stands in contrast to the open upper canopy profile of S. virgatum, which allows greater convective exchange at depth and appears to preclude the development of distinct sun–shade photobiont ecotypes. Net photosynthetic activity remains high in fully saturated thalli of S. tomentosum, yet in S. virgatum it is depressed by over 50% at full thallus saturation. This greater depression of photosynthetic uptake at full thallus saturation in the species of the more mesic environment contradicts a priori assumptions based on previous concepts of xeric–mesic response gradients in lichens. These responses are discussed in context of other selective pressures influencing lichen mat morphology.


1987 ◽  
Vol 65 (1) ◽  
pp. 182-191 ◽  
Author(s):  
U. Matthes-Sears ◽  
T. H. Nash III ◽  
D. W. Larson

The response of net CO2 exchange to thallus water content, thallus temperature, and photosynthetically active radiation was measured in the laboratory for two morphologically different forms of Ramalina menziesii collected from a coastal and an inland habitat in central California. Equations describing the response curves are fitted to the data and compared statistically for the two sites during two seasons. Significant differences were present for all responses both in summer and winter but were more pronounced for net photosynthesis than for dark respiration. The main differences between the two forms were in the absolute rates of net photosynthesis; a maximum of 6.2 was measured for the inland form but only 3.6 mg∙g−1∙h−1 for the coastal form. Chlorophyll contents were also different between the two forms, indicating that chlorophyll is the likely cause for the difference in net photosynthetic rates. Net photosynthetic rates were higher at low temperatures during winter than during summer, but otherwise seasonal variations in the gas exchange responses were relatively minor. Both forms of the lichen are light saturated at quantum fluxes greater than 200 μE∙m−2∙s−1. Both show an optimum temperature for maximum CO2 exchange at 25 °C, well above the mean operating temperature of R. menziesii in the field.


2021 ◽  
Author(s):  
Michael Hunter ◽  
Diana Fusco

ABSTRACTViral co-infection occurs when multiple distinct viral particles infect the same host. This can impact viral evolution through intracellular interactions, complementation, reassortment and recombination. In nature many viral species are found to have a wide range of mechanisms to prevent co-infection, which raises the question of how viral evolution is impacted by this strategic choice. Here, we address this question in a model viral system, the ubiquitous bacteriophage and its host bacteria. Using a stochastic model of phage-host interactions in agent-based simulations, we first characterise the behaviour of neutral mutants and find that co-infection decreases the strength of genetic drift. We then quantify how variations in the phage life history parameters affect viral fitness. Importantly, we find that the growth rate (dis)advantage associated with variations in life history parameters can be dramatically different from the competitive (dis)advantage measured in direct-competition simulations. Additionally, we find that co-infection facilitates the fixation of beneficial mutations and the removal of deleterious ones, suggesting that selection is more efficient in co-infecting populations. We also observe, however, that in populations which allow co-infection, a mutant that prevents it displays a substantial competitive advantage over the rest of the population, and will eventually fix even if it displays a much lower growth rate in isolation. Our findings suggest that while preventing co-infection can have a negative impact on the long-term evolution of a viral population, in the short-term it is ultimately a winning strategy, possibly explaining the prevalence of phage capable of preventing co-infection in nature.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1165g-1166
Author(s):  
Keith Birkhold ◽  
Rebecca Darnell ◽  
Karen Koch

Carbon exchange and content of blueberry (Vaccinium ashei) fruit were measured from anthesis through fruit ripening in order to determine the amount of imported carbon required for fruit development. Net photosynthesis occurred in blueberry fruit from petal fall through color break. During this time, gross photosynthesis of fruit decreased from 30.1 μmol CO2·g fw-1·hr-1 to 4.8 μmol CO2·g fw-1·hr-1, and dark respiration decreased from 14.3 μmol CO2·g fw-1·hr-1 to 4.6 μmol CO2·g fw-1·hr-1. After color break, the photosynthetic rate fell to zero, and the respiration rate increased to 8.0 μmol CO2·g fw-1·hr-1, before decreasing. Preliminary data suggest that fruit photosynthesis contributes 11% of the total carbon required (dry weight gain + respiratory loss) during fruit development however, it supplies 50% of the total carbon required during the first 5 days after petal fall. This contribution of carbon from fruit photosynthesis may be critical in initial fruit development since the current season's vegetative growth is not yet providing carbohydrates.


2014 ◽  
Vol 24 (5) ◽  
pp. 527-534 ◽  
Author(s):  
Christopher J. Currey ◽  
Roberto G. Lopez ◽  
Neil S. Mattson

Energy accounts for one of the largest costs in commercial greenhouse (GH) production of annual bedding plants. Therefore, many bedding plant producers are searching for energy efficient production methods. Our objectives were to quantify the impact of growing annual bedding plants in an unheated high tunnel (HT) compared with a traditional heated GH environment at two northern latitudes. Ten popular bedding plants [angelonia (Angelonia angustifolia), vinca (Catharanthus roseus), celosia (Celosia argentea), dianthus (Dianthus chinensis), geranium (Pelargonium ×hortorum), petunia (Petunia ×hybrida), french marigold (Tagetes patula), viola (Viola ×cornuta), snapdragon (Antirrhinum majus), and osteospermum (Osteospermum ecklonis)] were grown both in an unheated HT and a glass-glazed GH with an 18 °C temperature set point beginning on 1 Apr. 2011 at both Cornell University (Ithaca, NY) and Purdue University (West Lafayette, IN). Although seven of the species exhibited a delay in flowering in the HT as compared with the heated GH, there were no differences in days to flower (DTF) for geranium, osteospermum, and viola grown at Cornell and viola at Purdue. The remaining species exhibited delays in flowering in the HT environment, which varied based on species. At Purdue, several species were lost because of a cold temperature event necessitating a second planting. For the second planting, osteospermum was the only species grown that flowered significantly later in the HT; 7 days later than the GH-grown plants. Production of cold-tolerant annuals in unheated or minimally heated HTs appears to be a viable alternative for commercial producers aiming to reduce energy costs.


Sign in / Sign up

Export Citation Format

Share Document