scholarly journals 654 The Role of Plant Genetic Resources in Safeguarding Global Carrying Capacity

HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 511A-511
Author(s):  
Peter Bretting

Plants provide humans with food, fiber, feed, ornamentals, industrial products, medicine, shelter, and fuel. As vegetation, they maintain global environmental integrity and the carrying capacity for all life. From an anthropocentric perspective, plants serve as genetic resources (PGR) for sustaining the growing human population. Research on PGR can provide basic knowledge for crop improvement or environmental management that enables renewable, sustainable production of the preceding necessities. PGR also provide the raw material for increasing yield and end product's quality, while requiring fewer inputs (water, nutrients, agrichemicals, etc.). The staples of life—30 or so major grain, oilseed, fiber, and timber species—comprise the “thin green line” vital to human survival, either directly, or through trade and income generation. Many crop genebanks worldwide focus on conserving germplasm of these staples as a shield against genetic vulnerability that may endanger economies and humanity on an international scale. Fewer genebanks and crop improvement programs conserve and develop “minor crops,” so called because of their lesser economic value or restricted cultivation globally. Yet, these minor crops, many categorized as horticultural, may be key to human carrying capacity—especially in geographically or economically marginal zones. The USDA/ARS National Plant Germplasm System (NPGS) contains a great number and diversity of minor crop germplasm. The NPGS, other genebanks, and minor crop breeding programs scattered throughout the world, help safeguard human global carrying capacity by providing the raw genetic material and genetic improvement infrastructure requisite for producing superior minor crops. The latter may represent the best hope for developing new varieties and crops, new crop rotations, and new renewable products that in the future may enhance producer profitability or even ensure producer and consumer survival.

2019 ◽  
Vol 79 (01S) ◽  
Author(s):  
Kuldeep Singh ◽  
Sandeep Kumar ◽  
S. Raj Kumar ◽  
Mohar Singh ◽  
Kavita Gupta

Plant Genetic Resources (PGR) conserved in gene bank provides genetic variability for efficient utilization in breeding programmes. Pre-breeding is required for broadening the genetic base of the crop through identification of useful traits in un-adapted materials and transfer them into better adapted ones for further breeding. So, pre-breeding is a promising alternative (due to use of un-adapted materials) to link genetic resources and breeding programs. Utilization of PGR in crop improvement programmes including prebreeding have been very limited. Advances in genomics have provided us with high-quality reference genomes, sequencing and re-sequencing platforms with reduced cost, marker and QTL assisted selection, genomic selection and population level genotyping platforms. Further, genome editing tools like, CRISPR/Cas9 and its latest modification base editing technology can be used to generate target specific mutants and are important for establishing gene functions with respect to their phenotypes through developing knockout mutations. These new genomic tools can be used to generate, analyse and manipulate the genetic variability for designing cultivars with the desired traits. The genomic tools has not only accelerated the utilization of PGR but also assisted pre-breeding through rapid selection of trait-specific germplasm, reduced periods in breeding cycle for confirming gene of interest in intermediate material and validation of transfer of gene of interest in the cultivated gene pool. In crops, where limited genetic and genomic resources are available, pre-breeding becomes very challenging. We can say that genomics assisted utilization of PGR and prebreeding has accelerated the pace of introgression of complex traits in different crop cultivars.and yield plateau has already been achieved in these cultivars (Chen et al. 2014a). Under these circumstances, use of Plant Genetic Resources (PGR) in crop improvement programs provides an avenue to solve the problem.


2004 ◽  
Vol 2 (1) ◽  
pp. 3-21 ◽  
Author(s):  
B. I. G. Haussmann ◽  
H. K. Parzies ◽  
T. Presterl ◽  
Z. Su?i? ◽  
T. Miedaner

2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
M. Govindaraj ◽  
M. Vetriventhan ◽  
M. Srinivasan

The importance of plant genetic diversity (PGD) is now being recognized as a specific area since exploding population with urbanization and decreasing cultivable lands are the critical factors contributing to food insecurity in developing world. Agricultural scientists realized that PGD can be captured and stored in the form of plant genetic resources (PGR) such as gene bank, DNA library, and so forth, in the biorepository which preserve genetic material for long period. However, conserved PGR must be utilized for crop improvement in order to meet future global challenges in relation to food and nutritional security. This paper comprehensively reviews four important areas; (i) the significance of plant genetic diversity (PGD) and PGR especially on agriculturally important crops (mostly field crops); (ii) risk associated with narrowing the genetic base of current commercial cultivars and climate change; (iii) analysis of existing PGD analytical methods in pregenomic and genomic era; and (iv) modern tools available for PGD analysis in postgenomic era. This discussion benefits the plant scientist community in order to use the new methods and technology for better and rapid assessment, for utilization of germplasm from gene banks to their applied breeding programs. With the advent of new biotechnological techniques, this process of genetic manipulation is now being accelerated and carried out with more precision (neglecting environmental effects) and fast-track manner than the classical breeding techniques. It is also to note that gene banks look into several issues in order to improve levels of germplasm distribution and its utilization, duplication of plant identity, and access to database, for prebreeding activities. Since plant breeding research and cultivar development are integral components of improving food production, therefore, availability of and access to diverse genetic sources will ensure that the global food production network becomes more sustainable. The pros and cons of the basic and advanced statistical tools available for measuring genetic diversity are briefly discussed and their source links (mostly) were provided to get easy access; thus, it improves the understanding of tools and its practical applicability to the researchers.


2019 ◽  
Vol 180 (2) ◽  
pp. 124-132 ◽  
Author(s):  
N. P. Loskutova ◽  
T. M. Ozerskaya

The article is dedicated to the mobilization of plant genetic resources from the territories of Indonesia, Sri Lanka (Ceylon) and Nepal to VIR’s collection by means of collecting explorations, germplasm requests and the exchange of accessions. The first, the longest and the only pre-war expedition to Indonesia and Ceylon was undertaken by Prof. V. V. Markovich; it lasted three years (1926–1928). He explored Java, Singapore and Ceylon, where he collected 772 germplasm samples. In 1957, D. V. Ter-Avanesyan, who worked as an agricultural attaché at the USSR Embassy in India, familiarized himself in every detail with plant resources and agriculture in Nepal. The late 1960s were marked by intensification of plant genetic resources introduction and new opportunities to organize regular collecting missions. In the period from 1960 to 1991, there were five plant exploration trips to Indonesia, Sri Lanka (Ceylon) and Nepal. In 1960, D. V. Ter-Avanesyan visited scientific institutions in Java, got acquainted with the main trends in agriculture, and collected 302 plant samples. In 1974, A. G. Lyakhovkin took part in a specialized collecting mission launched to study and collect wild forms and cultivars of rice and various other crops from Nepal. The team visited 16 experiment stations and farms and collected 1170 accessions. In 1985, an expedition team led by E. F. Molchanov collected and studied wild and cultivated forms of subtropical plants in Sri Lanka. The team visited 5 institutes and experiment stations, 3 botanical gardens, and collected 370 accessions. In 1988, another collecting team led by L. A. Burmistrov, whose task was to study the system of nation-wide projects on crop improvement, traveled over four provinces, visited 11 scientific and academic institutions of Nepal, and collected 766 germplasm samples. The last collecting trip to Indonesia was led by N. G. Musatenko in 1991. The team collected 95 varieties and wild forms. In total, the Institute’s collecting and exploration activities in Indonesia, Sri Lanka (Ceylon) and Nepal added 3496 accessions to its collections. In addition to direct collecting in Indonesia, Sri Lanka (Ceylon) and Nepal, VIR has always been replenishing its holdings by seed requests. During the whole pre-war period, from 1925 through 1941, 256 germplasm accessions were added. All in all, from 1948 through 2018, 104 accessions were introduced from Indonesia, Sri Lanka (Ceylon) and Nepal. The greatest number of accessions received by the Institute represented groat crops (over 1400), followed by wheat and barley (458), and industrial crops (627). In total, during the whole period of its existence, the Institute has mobilized 3843 accessions, representing 377 plant species.


2008 ◽  
Vol 6 (3) ◽  
pp. 232-236 ◽  
Author(s):  
Gunjeet Kumar ◽  
B. L. Meena ◽  
Ranjan Kar ◽  
Shailesh K. Tiwari ◽  
K. K. Gangopadhyay ◽  
...  

Brinjal (Solanum melongena L.) is an important solanaceous vegetable in many countries of Asia and Africa. It is a good source of minerals and vitamins in the tropical diets. Assessment of genetic resources is the starting point of any crop improvement programme. In India, the National Bureau of Plant Genetic Resources is the nodal institute for management of germplasm resources of crop plants and holds more than 2500 accessions of brinjal in its genebank. In the present study, morphological diversity in a set of 622 accessions, comprising 543 accessions from indigenous sources and 79 accessions of exotic origin, was assessed. Wide range of variations for 31 descriptors, 13 quantitative and 18 qualitative, were recorded. The wide regional variations for plant, flower and fruit descriptors revealed enough scope for improvement of yield characters by selection. The genetic differences among the landraces are potentially relevant to breeding programmes in that the variability created through hybridization of the contrasting forms could be exploited.


2017 ◽  
Vol 23 (1) ◽  
Author(s):  
Obssi Dessalegn Hora ◽  
Abebaw Misganaw Amebaw

Genetic diversity assessments of plant play a great role in a predictable area to improve agricultural production and productivity, to solve food uncertainty in developing world.  Many breeders has tried to  realized that crop with diverge genetic diversity  can be assessed , evaluated ,captured and stored in the form of superior  plant  genetic resources  such as gene bank, DNA library to  preserve genetic material for long period. However, the conserved genetically diversified plant must be utilized to improve crop production in order to solve future food and nutritional challenges. This paper reviews eight important areas; (i) Gaps in Developing Taxonomy of Ethiopian crops (ii) Monitoring diversity for crop improvement, (iii) Alterations in landscape features, (iv) Significance of Germplasm Conservation of crops, (v) Gap in morphological characterization, (vi) Global perspective of agro biodiversity and molecular evolution, (vii) Emergence of tissue culture technology in Ethiopia (viii) Germplasm improvement. It provides basic enlightenment for plant breeders for better understanding and rapid diversity assessment of crop, for better understanding and utilization of germplasm from gene banks to their applied breeding programs. With the advent of new biotechnological techniques, this process of conventional breeding is now being accelerated and carried out with more precision and speedy manner than the classical breeding techniques by using molecular markers to avoid taxonomic confusion. For sustainable food production, conventional plant breeding research should have integration with molecular marker assisted evaluation of crops genetic diversity and/or cultivar improvement will be achieved. As a result, availability and access to diverse genetic sources will ensure that the global food production network becomes more sustainable. The merit and demerit of the basic morphological characterizations are briefly discussed and their source links were provided to get easy access; thus, it improves the understanding of modern molecular tools and its practical applicability to the breeders. 


2016 ◽  
Vol 8 (4) ◽  
pp. 156 ◽  
Author(s):  
Brhan Khiar Saleh ◽  
Remmy W. Kasili ◽  
Edward G. Mamati ◽  
Woldeamlak Araia ◽  
Aggrey B. Nyende

<p>Diversity in plant genetic resources provides an opportunity for plant breeders to develop new and improved cultivars with desirable characteristics. The purpose of this study was to assess the diversity of Eritrean pepper germplasm in order to obtain information for improving it. A total of 60 pepper (<em>Capsicum</em> spp.) seed sample collections were obtained from farmers and institutions in Eritrea. The collections were evaluated at two sites located in two different agro-climatic regions of the country. The collections were assessed using 16 quantitative and 23 qualitative descriptors. A Randomized Complete Block Design was used for the evaluation. Quantitative and qualitative data of the two sites were subjected to Principal Component Analysis, Principal Coordinate Analysis, Hierarchal clustering, Analysis of variance and Correlation. The distribution of characters of the different quantitative and qualitative traits and the performance of the collections showed the existece of variable characters distributed among the collections indicating considerable diversity. For quantitative variables, the first three components were able to explain 61%, 58% and 67% of the total variation in Hamelmalo, Asmara and combined data of the two sites respectively. While for the qualitative variables the first three components were able to explain a variation of 58% in Hamelmalo, 49%, in Asmara and 55% combined data of the two sites. Phenological attributes and fruit characteristics were found to contribute more to the variation. The majority of the traits evaluated were significant and the highest Coefficient of Variation was related to fruit characteristics. The results of this study showed that there is sufficient variability within the Eritrean pepper genotypes that could be used in future breeding and crop improvement programs.</p>


1971 ◽  
Vol 6 (6) ◽  
pp. 248-253 ◽  
Author(s):  
J. G. Hawkes

Higher yields, better quality, easier harvesting, resistance to pests and diseases are a few of the many existing reasons why improved crop varieties are required. Other—as yet unsuspected—needs can arise in the future as a consequence of the rapidly changing patterns of agriculture. Under these circumstances, plant breeders require large reservoirs of genetic material. The management and exploitation of such resources are only now beginning to receive the attention they deserve.


2018 ◽  
Vol 5 (1) ◽  
Author(s):  
Maria Y. Gonzalez ◽  
Stephan Weise ◽  
Yusheng Zhao ◽  
Norman Philipp ◽  
Daniel Arend ◽  
...  

Abstract The scarce knowledge on phenotypic characterization restricts the usage of genetic diversity of plant genetic resources in research and breeding. We describe original and ready-to-use processed data for approximately 60% of ~22,000 barley accessions hosted at the Federal ex situ Genebank for Agricultural and Horticultural Plant Species. The dataset gathers records for three traits with agronomic relevance: flowering time, plant height and thousand grain weight. This information was collected for seven decades for winter and spring barley during the seed regeneration routine. The curated data represent a source for research on genetics and genomics of adaptive and yield related traits in cereals due to the importance of barley as model organism. This data could be used to predict the performance of non-phenotyped individuals in other collections through genomic prediction. Moreover, the dataset empowers the utilization of phenotypic diversity of genetic resources for crop improvement.


Sign in / Sign up

Export Citation Format

Share Document