scholarly journals Effects of Delays between Harvest and 1-Methylcyclopropene Treatment, and Temperature during Treatment, on Ripening of Air-stored and Controlled-atmosphere-stored Apples

HortScience ◽  
2005 ◽  
Vol 40 (7) ◽  
pp. 2096-2101 ◽  
Author(s):  
Christopher B. Watkins ◽  
Jacqueline F. Nock

The effects of temperature during 1-MCP treatment, and the effects of delays of up to 8 d after harvest before treatment, have been investigated using `Cortland', `Delicious', `Jonagold', and `Empire' (normal and late harvest) apple [(Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.] cultivars stored in air for 2 and 4 months and in controlled atmosphere (CA) storage for 4 and 8 months. Fruit were treated with 1 μL·L–1 1-MCP for 24 hours on the day of harvest (warm) or after 1, 2, 3, 4, 6, or 8 days at cold storage temperatures. CA storage was established by day 10. Little effect of temperature during treatment (warm fruit on the day of harvest compared with cold fruit after 24 hours of cooling) was detected. Major interactions among cultivars, handling protocols before 1-MCP treatment, storage type and length of storage were observed. Delays of up to 8 days before 1-MCP treatment either did not affect efficacy of treatment, or markedly reduced it, depending on cultivar, storage type and length of storage. The results indicate that, depending on cultivar, the importance of minimizing the treatment delay increases as storage periods increase.

1964 ◽  
Vol 44 (6) ◽  
pp. 568-579 ◽  
Author(s):  
S. W. Porritt

Response of Anjou and Bartlett pears to nine storage temperatures ranging from 29° to 70°F was determined by periodic evaluation of ripened fruit, analysis of certain chemical and physical properties, and measurement of respiration throughout the storage period.After harvest, low metabolic activity persisted about 4 days in Bartlett and over 50 days in Anjou at 50° to 70°F. Anjou pears ripened only after a period of cold storage. The total amount of carbon dioxide respired during storage life diminished with rising temperature. Storage life of Anjou and Bartlett pears was respectively 35 and 40% greater at 30° than at 32°F.


BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 6231-6243
Author(s):  
Klára Kobetičová ◽  
Martin Böhm ◽  
Jana Nábělková ◽  
Robert Černý

Methylxanthine’s fungicidal properties were investigated, with attention to the temperature of treatment. Caffeine and theophylline treatments of beech and spruce woods were applied for three months in the temperature range of -20 to 40 °C, simulating potential weather conditions in the European region and temperatures specific for various wood applications (cellars, wine cellars, room indoor temperatures, interior trusses). Effects of the selected temperatures were considered without the influence of the other possible factors, which have been considered in previous studies (e.g. effects of temperature in combination with other factors such as UV radiation, humidity, and chemical or biological degradation). Then, the specimens were exposed to a mix of molds and fungi for three months under controlled laboratory conditions in order to analyze a possible subsequent biological attack. The results did not show any effect of temperature of the methylxanthine treatment within the studied range on the organismal activity. Caffeine exhibited a better protective potential than theophylline and was more effective for spruce than for beech. The results indicated the suitability of caffeine for protection of spruce and spruce-based materials in interior applications at a stable temperature without significant effects of UV and humidity.


MRS Advances ◽  
2020 ◽  
Vol 5 (63) ◽  
pp. 3389-3395
Author(s):  
R. González-Díaz ◽  
D. Fernández-Sánchez ◽  
P. Rosendo-Francisco ◽  
G. Sánchez-Legorreta

AbstractIn this work, the first results of the effects of temperature during the production of Se2- ions and the effect during the interaction of Cd2+ and Se2- ions in the synthesis process of CdSe nanoparticles are presented. The synthesis of CdSe was carried out by the colloidal technique, in the first one we used a temperature of 63 °C to produce Se2- ions and in the second one an interaction temperature of 49 °C. The samples were characterized using a Scanning Electron Microscope (SEM) and a Scanning Tunneling Microscope (STM). From the SEM micrographs it was possible to identify the thorns formation and irregular islands. STM micrographs reveal elliptical shapes with a regular electron cloud profile.


2005 ◽  
Vol 45 (12) ◽  
pp. 1635 ◽  
Author(s):  
A. Uthairatanakij ◽  
P. Penchaiya ◽  
B. McGlasson ◽  
P. Holford

Low temperature disorders of nectarines are thought to be expressions of chilling injury. Chilling injury is a form of stress usually associated with increased synthesis of ethylene and its immediate precursor, aminocyclopropane-1-carboxylic acid (ACC). However, other mechanisms for the development of chilling injury have been proposed. To help determine the nature of the processes leading to chilling injury in nectarines (Prunus persica) and how the gaseous composition of the storage atmosphere effects the development of low temperature disorders, levels of ACC and conjugated ACC were measured in fruit of the cv. Arctic Snow. These compounds were measured in fruit ripened at 20°C immediately after harvest, in fruit on removal from cold storage and in fruit ripened at 20°C following cold storage. During storage, fruit were kept at 0°C in the 4 following atmospheres: air; air + 15% CO2; air + 15 µL/L ethylene; and air + 15% CO2 + 15 µL/L ethylene. Concentrations of ACC remained low in all treatments and no significant changes in ACC levels due to added ethylene or CO2 were observed. Concentrations of conjugated ACC were about 10-times that of ACC and again were not influenced by the composition of the storage atmosphere. No significant changes in either ACC or conjugated ACC were observed until after flesh bleeding, the major symptoms of low temperature disorder expressed in these fruit, had begun to appear. It was concluded that disorders in nectarines stored at low temperatures are not a stress response involving a disruption of ethylene metabolism but may be associated with differential changes in the metabolism of enzymes associated with normal ripening.


2014 ◽  
Vol 86 (1) ◽  
pp. 485-494 ◽  
Author(s):  
CRISTIANO ANDRÉ STEFFENS ◽  
CASSANDRO V.T. DO AMARANTE ◽  
ERLANI O. ALVES ◽  
AURI BRACKMANN

The objective of this study was to evaluate the effect of controlled atmosphere (CA) on quality preservation of ‘Laetitia’ plums, mainly on internal breakdown, in order to determine the best CA storage conditions. Two experiments were carried out one in 2010, and another in 2011. In 2010, besides cold storage (CS; 21.0 kPa O2 + 0.03 kPa CO2), the fruits were stored under the following CA conditions (kPa O2+kPa CO2): 1+3, 1+5, 2+5, 2+10, and 11+10. In 2011, the fruits were stored under CS and CA of 1+0, 1+1, 2+1, and 2+2. The fruit stored under different CA conditions had lower respiration and ethylene production, better preservation of flesh firmness, texture and titratable acidity, lower skin red color, and lower incidence of skin cracking than the fruit in CS. In 2010, the fruit under CA with 2+5, 1+5, and 1+3 had a pronounced delay in ripening, although it exhibited a high incidence of internal breakdown. In 2011, the CA conditions with 2+1 and 2+2 provided the best delay in ripening and a reduced incidence of internal breakdown. The best CA condition for cold storage (at 0.5°C) of ‘Laetitia’ plums is 2 kPa O2 + 2 kPa CO2.


2001 ◽  
Vol 126 (5) ◽  
pp. 618-624 ◽  
Author(s):  
Nazir A. Mir ◽  
Erin Curell ◽  
Najma Khan ◽  
Melissa Whitaker ◽  
Randolph M. Beaudry

Fruit of `Redchief Delicious' apple [Malus sylvestris (L) Mill. var. domestica (Borkh.) Mansf.] were harvested 1 week before the climacteric (harvest 1), at the onset of the climacteric (harvest 2), and 1 week after the onset of the climacteric (harvest 3). Fruit were stored at 0, 5, 10, 15, or 20 °C and were treated with 0.7 μL·L-1 1-MCP on a once-per-week, once-per-2-week, once-per-month, and once-per-year basis or were left nontreated. The initial 1-MCP treatment was at 20 °C and subsequent applications were at storage temperatures. The compound slowed softening at all temperatures relative to nontreated fruit, however as temperature decreased, the benefits of 1-MCP application became less pronounced. Effectiveness of 1-MCP declined slightly as harvest maturity increased. Efficacy of 1-MCP treatment increased with greater frequency of application at 5, 10, 15, and 20 °C, but not at 0 °C. Fruit stored without refrigeration (20 °C) for more than 100 days did not soften significantly when treated once per week with 1-MCP. However, decay was a significant problem for treated and nontreated fruit stored at temperatures >5 °C; 1-MCP application reduced, but did not prevent decay. Rate of decline in titratable acidity increased with storage temperature and 1-MCP had no significant effect on retarding the decline in acid content. Minimal (Fo) and maximal (Fm) chlorophyll fluorescence was altered markedly by 1-MCP application, but the ratio of (Fm-Fo)/Fm was only slightly affected. The most effective 1-MCP treatment frequency was once per week and, at all elevated temperatures (5, 10, 15, and 20 °C), slowed loss of firmness to a greater extent than refrigeration (0 °C) alone. Application of 1-MCP resulted in greater retention of firmness than controlled atmosphere (CA) with O2 and CO2 at 1.5 kPa and 3 kPa, respectively. Data suggest that 1-MCP application, has the potential to reduce reliance on refrigeration and CA storage for maintaining firmness of `Redchief Delicious' apple, especially for relatively short storage durations (<50 days) when fruit are harvested within a week of the ethylene climacteric. Chemical name used: 1-methylcyclopropene (1-MCP).


2020 ◽  
Author(s):  
Lei Qin ◽  
Qiang Sun ◽  
Jiani Shao ◽  
Yang Chen ◽  
Xiaomei Zhang ◽  
...  

Abstract Background: The effects of temperature and humidity on the epidemic growth of coronavirus disease 2019 (COVID-19)remains unclear.Methods: Daily scatter plots between the epidemic growth rate (GR) and average temperature (AT) or average relative humidity (ARH) were presented with curve fitting through the “loess” method. The heterogeneity across days and provinces were calculated to assess the necessity of using a longitudinal model. Fixed effect models with polynomial terms were developed to quantify the relationship between variations in the GR and AT or ARH.Results: An increased AT dramatically reduced the GR when the AT was lower than −5°C, the GR was moderately reduced when the AT ranged from −5°C to 15°C, and the GR increased when the AT exceeded 15°C. An increasedARH increased theGR when the ARH was lower than 72% and reduced theGR when the ARH exceeded 72%.Conclusions: High temperatures and low humidity may reduce the GR of the COVID-19 epidemic. The temperature and humidity curves were not linearly associated with the COVID-19 GR.


RSC Advances ◽  
2015 ◽  
Vol 5 (69) ◽  
pp. 56382-56390 ◽  
Author(s):  
Bao-Zhen Sun ◽  
Zuju Ma ◽  
Chao He ◽  
Kechen Wu

The synergistic deployment of the effects of temperature and carrier concentration raises the ZT of SnS to a high value (1.61 ± 0.02).


Sign in / Sign up

Export Citation Format

Share Document