scholarly journals Remote Sensing of Canopy Cover in Horticultural Crops

HortScience ◽  
2008 ◽  
Vol 43 (2) ◽  
pp. 333-337 ◽  
Author(s):  
Thomas J. Trout ◽  
Lee F. Johnson ◽  
Jim Gartung

Canopy cover (CC) is an important indicator of stage of growth and crop water use in horticultural crops. Remote sensing of CC has been studied in several major crops, but not in most horticultural crops. We measured CC of 11 different annual and perennial horticultural crops in various growth stages on 30 fields on the west side of California's San Joaquin Valley with a handheld multispectral digital camera. Canopy cover was compared with normalized difference vegetation index (NDVI) values calculated from Landsat 5 satellite imagery. The NDVI was highly correlated and linearly related with measured CC across the wide range of crops, canopy structures, and growth stages (R2 = 0.95, P < 0.01) and predicted CC with mean absolute error of 0.047 up to effective full cover. These results indicate that remotely sensed NDVI may be an efficient way to monitor growth stage, and potentially irrigation water demand, of horticultural crops.

2018 ◽  
Vol 36 (3) ◽  
pp. 266-273
Author(s):  
Euseppe Ortiz ◽  
Enrique A. Torres

The use of remote sensing to determine water needs has been successfully applied by several authors to different crops, maintaining, as an important basis, the relationship between the normalized difference vegetation index (NDVI) and biophysical variables, such as the fraction of coverage (fc) and the basal crop coefficient (Kcb). Therefore, this study quantified the water needs of two varieties of coriander (UNAPAL Laurena CL and UNAPAL Precoso CP) based on the response of fc and Kcb, using remote sensors and a water balance according to the FAO-56 methodology. A Campbell Scientific meteorological station, a commercial digital camera and a portable spectro radiometer were used to obtain information on the environmental conditions and the crop. By means of remote sensing associated with a water balance, it was found that the water demand was 156 mm for CL and 151 mm for CP until the foliage harvest (41 d after sowing); additionally, the initial Kcb was 0.14, the mean Kcb was 1.16 (approximately) and the final Kcb was 0.71 (approximately).


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 940
Author(s):  
Rocío Ballesteros ◽  
Miguel A. Moreno ◽  
Fellype Barroso ◽  
Laura González-Gómez ◽  
José F. Ortega

The availability of a great amount of remote sensing data for precision agriculture purposes has set the question of which resolution and indices, derived from satellites or unmanned aerial vehicles (UAVs), offer the most accurate results to characterize vegetation. This study focused on assessing, comparing, and discussing the performances and limitations of satellite and UAV-based imagery in terms of canopy development, i.e., the leaf area index (LAI), and yield, i.e., the dry aboveground biomass (DAGB), for maize. Three commercial maize fields were studied over four seasons to obtain the LAI and DAGB. The normalized difference vegetation index (NDVI) and visible atmospherically resistant index (VARI) from satellite platforms (Landsat 5TM, 7 ETM+, 8OLI, and Sentinel 2A MSI) and the VARI and green canopy cover (GCC) from UAV imagery were compared. The remote sensing predictors in addition to the growing degree days (GDD) were assessed to estimate the LAI and DAGB using multilinear regression models (MRMs). For LAI estimation, better adjustments were obtained when predictors from the UAV platform were considered. The DAGB estimation revealed similar adjustments for both platforms, although the Landsat imagery offered slightly better adjustments. The results obtained in this study demonstrate the advantage of remote sensing platforms as a useful tool to estimate essential agronomic features.


Author(s):  
B. K. Handique ◽  
C. Goswami ◽  
C. Gupta ◽  
S. Pandit ◽  
S. Gogoi ◽  
...  

Abstract. Assessment of horticultural crops under mixed cropping system has been a challenge, both for horticulturists and also to the remote sensing communities. But the recent developments in wide range of sensors onboard Unmanned Aerial Vehicles (UAVs) has opened up new possibilities in identification, mapping and monitoring of horticultural crops. This paper presents the results made from a pilot exercise on horticultural crop discrimination using Parrot Sequoia multi-spectral sensor onboard a UAV. This exercise was carried out in Nongkhrah village, Ri-Bhoi district of Meghalaya state located in the north eastern part of India having mixed horticultural crops. A two level hierarchical classification system was followed for identification and delineation of the major horticultural crops in the village. Parrot Sequoia multi-spectral sensor having four bands has been found to be effective in discrimination of horticultural crops based on variation in spectral response of six horticultural crops viz., pineapple, banana, orange, papaya, ginger and turmeric using three commonly used indices viz., Normalized Difference Vegetation Index (NDVI), Normalized Difference Red Edge Index (NDRE) and Green Normalized Difference Vegetation Index (GNDVI). NDVI and GNDVI showed nearly similar spectral response, whereas separability among the horticultural crops significantly improved with the use of NDRE. The first level of classification involving the five broad land cover classes has resulted an overall accuracy of about 91%, whereas the second level of classification for delineating the five selected horticultural crops has provided an overall accuracy of 79.8%.


Author(s):  
A. Novo ◽  
H. González-Jorge ◽  
J. Martínez-Sánchez ◽  
H. Lorenzo

Abstract. Spain is included in the top five European countries with the highest number of wildfires. Forest fire can produce significant impacts on the structure and functioning of natural ecosystems. After a forest fire, the evaluation of the damage severity and spatial patterns are important for forest recovery planning, which plays a critical role in the sustainability of the forest ecosystem. The process of forest recovery and the ecological and physiological functions of the burned forest area should be continuously monitored. Remote sensing technologies and in special LiDAR are useful to describe the structure of vegetation. The vegetation modelling and the initial changes of forest plant composition are studied in the forest after mapping the burned areas using Landsat-7 images and Sentinel-2 images. Normalized Burn Ratio (NBR) index and Normalized Difference Vegetation Index (NVVI) is calculated as well as the difference before and after fire. The evaluation of temporal changes of vegetation are analysed by statistical variables of the point cloud, average height, standard deviation and variance. Fraction Canopy Cover (FCC) also is calculated and the point cloud is classified following the fuel model by Prometheus. An analysis method based on satellite images was completed in order to analyse the evolution of vegetation in areas that suffer forest fire.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
David M. Deery ◽  
David J. Smith ◽  
Robert Davy ◽  
Jose A. Jimenez-Berni ◽  
Greg J. Rebetzke ◽  
...  

Canopy ground cover (GC) is an important agronomic measure for evaluating crop establishment and early growth. This study evaluates the reliability of GC estimates, in the presence of varying light and dew on leaves, from three different ground-based sensors: (1) normalized difference vegetation index (NDVI) from the commercially available GreenSeeker®; (2) RGB images from a digital camera, where GC was determined as the portion of pixels from each image meeting a greenness criterion (i.e., Green−Red/Green+Red>0); and (3) LiDAR using two separate approaches: (a) GC from LiDAR red reflectance (whereby red reflectance less than five was classified as vegetation) and (b) GC from LiDAR height (whereby height greater than 10 cm was classified as vegetation). Hourly measurements were made early in the season at two different growth stages (tillering and stem elongation), among wheat genotypes highly diverse for canopy characteristics. The active NDVI showed the least variation through time and was particularly stable, regardless of the available light or the presence of dew. In addition, between-sample-time Pearson correlations for NDVI were consistently high and significant (P<0.0001), ranging from 0.89 to 0.98. In comparison, GC from LiDAR and RGB showed greater variation across sampling times, and LiDAR red reflectance was strongly influenced by the presence of dew. Excluding times when the light was exceedingly low, correlations between GC from RGB and NDVI were consistently high (ranging from 0.79 to 0.92). The high reliability of the active NDVI sensor potentially affords a high degree of flexibility for users by enabling sampling across a broad range of acceptable light conditions.


1991 ◽  
Vol 27 (4) ◽  
pp. 423-429 ◽  
Author(s):  
R. K. Mahey ◽  
Rajwant Singh ◽  
S. S. Sidhu ◽  
R. S. Narang

SUMMARYGround-based radiometric measurements in the red and infrared bands were used to monitor the growth and development of wheat under irrigated and stressed conditions throughout the 1987–88 and 1988–89 growth cycles. Spectral data were correlated with plant height, leaf area index, total fresh and total dry biomass, plant water content and grain yield. The radiance ratio (R) and normalized difference vegetation index (NDVI) were highly and linearly correlated with yield, establishing the potential which remote sensing has for predicting grain yield. The correlation for R and NDVI was at a maximum between 75 and 104 days after sowing, corresponding with maximum green crop canopy cover. The differences in spectral response over time between irrigated and unirrigated crops allowed detection of water stress effects on the crop, indicating that a hand-held radiometer can be used to collect spectral data which can supply information on wheat growth and development.Efectos de lafalta de agua en el trigo


Proceedings ◽  
2018 ◽  
Vol 2 (7) ◽  
pp. 335 ◽  
Author(s):  
Assaf Chen ◽  
Valerie Orlov-Levin ◽  
Moshe Meron

Canopy cover (or vegetation cover) maps serve in irrigation management mainly to determine the primary evapotranspiration (ET) coefficient, as radiation interception and evaporative surface area are directly related to canopy cover. Crop size and development with time depends on water supply; therefore, crop canopy maps are tools for the detection of the spatial uniformity of irrigation systems. Several aerial scan campaigns were deployed in the Upper Galilee of Israel in the 2017 growing season to follow up and evaluate the irrigation uniformity and crop coefficients of peanuts and cotton by RGB scans of a Phantom 4 multirotor unmanned aerial vehicle (UAV). Foliage intensity and coverage were enhanced by a green-red vegetation index (GRVI), which is a normalized difference vegetation index (NDVI)-like process where the green channel replaced the near-infrared (NIR). The results demonstrated that the GRVI is suitable for the purpose of determining the vegetation cover. Furthermore, the GRVI yielded better results than the NDVI in recognizing phenological crop changes (especially senescence). Therefore, this research proves the applicability of a low-cost digital camera mounted on an easily accessible UAV for crop cover and actual, in-field, ET coefficients determination and irrigation uniformity evaluation.


Author(s):  
M. M. Saberioon ◽  
A. Gholizadeh

Concerns over the use of nitrogen have been increasing due to the high cost of fertilizers and environmental pollutions caused by excess nitrogen application in agricultural fields. Several methods are available to assess the amount of nitrogen in crops, however, they are expensive, time-consuming, inaccurate, and/or require specialists to operate the tools. Researcher recently suggested remote sensing and specifically Low Altitude Remote Sensing (LARS) system of chlorophyll content in crop canopies as a low-cost alternative to estimate plant nitrogen status. The main objective of this study was to develop and test a new Vegetation Index (VI) to determine the status of nitrogen and chlorophyll content in rice leaf by analysing and considering all Visible (Vis) bands. Besides, capability of introduced VI has compared with all known VIs in both Vis and Near Infrared (NIR) bands in canopy scale. To develop the VI, images from 6-pannel leaf colour chart were acquired using Basler Scout scA640-70fc under light-emitting diode lighting, in which principal component analysis was used to retain the lower order principal component to develop a new index called IPCA. A conventional digital camera mounted to an Unmanned Aerial Vehicle (UAV) was also used to acquire images over the rice canopy in Vis bands. Simultaneously, Tetracam agriculture digital camera was employed to acquire rice canopy image in Vis-NIR bands. The results indicated that the proposed index at canopy (r = 0.78) scale could be used as a sensor to determine the status of chlorophyll content consequently for monitoring nitrogen in rice plant through different growth stages. Moreover, results confirmed that a lowcost LARS system would be suited for high spatial and temporal resolution images and data analysis for proper assessment of key nutrients in crop farming in a fast, inexpensive and non-destructive way.


Author(s):  
M. M. Saberioon ◽  
A. Gholizadeh

Concerns over the use of nitrogen have been increasing due to the high cost of fertilizers and environmental pollutions caused by excess nitrogen application in agricultural fields. Several methods are available to assess the amount of nitrogen in crops, however, they are expensive, time-consuming, inaccurate, and/or require specialists to operate the tools. Researcher recently suggested remote sensing and specifically Low Altitude Remote Sensing (LARS) system of chlorophyll content in crop canopies as a low-cost alternative to estimate plant nitrogen status. The main objective of this study was to develop and test a new Vegetation Index (VI) to determine the status of nitrogen and chlorophyll content in rice leaf by analysing and considering all Visible (Vis) bands. Besides, capability of introduced VI has compared with all known VIs in both Vis and Near Infrared (NIR) bands in canopy scale. To develop the VI, images from 6-pannel leaf colour chart were acquired using Basler Scout scA640-70fc under light-emitting diode lighting, in which principal component analysis was used to retain the lower order principal component to develop a new index called IPCA. A conventional digital camera mounted to an Unmanned Aerial Vehicle (UAV) was also used to acquire images over the rice canopy in Vis bands. Simultaneously, Tetracam agriculture digital camera was employed to acquire rice canopy image in Vis-NIR bands. The results indicated that the proposed index at canopy (r = 0.78) scale could be used as a sensor to determine the status of chlorophyll content consequently for monitoring nitrogen in rice plant through different growth stages. Moreover, results confirmed that a lowcost LARS system would be suited for high spatial and temporal resolution images and data analysis for proper assessment of key nutrients in crop farming in a fast, inexpensive and non-destructive way.


2019 ◽  
Vol 21 (2) ◽  
pp. 1310-1320
Author(s):  
Cícera Celiane Januário da Silva ◽  
Vinicius Ferreira Luna ◽  
Joyce Ferreira Gomes ◽  
Juliana Maria Oliveira Silva

O objetivo do presente trabalho é fazer uma comparação entre a temperatura de superfície e o Índice de Vegetação por Diferença Normalizada (NDVI) na microbacia do rio da Batateiras/Crato-CE em dois períodos do ano de 2017, um chuvoso (abril) e um seco (setembro) como também analisar o mapa de diferença de temperatura nesses dois referidos períodos. Foram utilizadas imagens de satélite LANDSAT 8 (banda 10) para mensuração de temperatura e a banda 4 e 5 para geração do NDVI. As análises demonstram que no mês de abril a temperatura da superfície variou aproximadamente entre 23.2ºC e 31.06ºC, enquanto no mês correspondente a setembro, os valores variaram de 25°C e 40.5°C, sendo que as maiores temperaturas foram encontradas em locais com baixa densidade de vegetação, de acordo com a carta de NDVI desses dois meses. A maior diferença de temperatura desses dois meses foi de 14.2°C indicando que ocorre um aumento da temperatura proporcionado pelo período que corresponde a um dos mais secos da região, diferentemente de abril que está no período de chuvas e tem uma maior umidade, presença de vegetação e corpos d’água que amenizam a temperatura.Palavras-chave: Sensoriamento Remoto; Vegetação; Microbacia.                                                                                  ABSTRACTThe objective of the present work is to compare the surface temperature and the Normalized Difference Vegetation Index (NDVI) in the Batateiras / Crato-CE river basin in two periods of 2017, one rainy (April) and one (September) and to analyze the temperature difference map in these two periods. LANDSAT 8 (band 10) satellite images were used for temperature measurement and band 4 and 5 for NDVI generation. The analyzes show that in April the surface temperature varied approximately between 23.2ºC and 31.06ºC, while in the month corresponding to September, the values ranged from 25ºC and 40.5ºC, and the highest temperatures were found in locations with low density of vegetation, according to the NDVI letter of these two months. The highest difference in temperature for these two months was 14.2 ° C, indicating that there is an increase in temperature provided by the period that corresponds to one of the driest in the region, unlike April that is in the rainy season and has a higher humidity, presence of vegetation and water bodies that soften the temperature.Key-words: Remote sensing; Vegetation; Microbasin.RESUMENEl objetivo del presente trabajo es hacer una comparación entre la temperatura de la superficie y el Índice de Vegetación de Diferencia Normalizada (NDVI) en la cuenca Batateiras / Crato-CE en dos períodos de 2017, uno lluvioso (abril) y uno (Septiembre), así como analizar el mapa de diferencia de temperatura en estos dos períodos. Las imágenes de satélite LANDSAT 8 (banda 10) se utilizaron para la medición de temperatura y las bandas 4 y 5 para la generación de NDVI. Los análisis muestran que en abril la temperatura de la superficie varió aproximadamente entre 23.2ºC y 31.06ºC, mientras que en el mes correspondiente a septiembre, los valores oscilaron entre 25 ° C y 40.5 ° C, y las temperaturas más altas se encontraron en lugares con baja densidad de vegetación, según el gráfico NDVI de estos dos meses. La mayor diferencia de temperatura de estos dos meses fue de 14.2 ° C, lo que indica que hay un aumento en la temperatura proporcionada por el período que corresponde a uno de los más secos de la región, a diferencia de abril que está en la temporada de lluvias y tiene una mayor humedad, presencia de vegetación y cuerpos de agua que suavizan la temperatura.Palabras clave: Detección remota; vegetación; Cuenca.


Sign in / Sign up

Export Citation Format

Share Document