scholarly journals Effects of Spring-sown Cover Crops on Establishment and Growth of Hairy Galinsoga (Galinsoga ciliata) and Four Vegetable Crops

HortScience ◽  
2009 ◽  
Vol 44 (3) ◽  
pp. 730-736 ◽  
Author(s):  
Virender Kumar ◽  
Daniel C. Brainard ◽  
Robin R. Bellinder

Hairy galinsoga [Galinsoga ciliata (Raf.) Blake] has become a troublesome weed in vegetable crops. Field studies were conducted in 2006 and 2007 in central New York to determine the effects of: 1) spring-sown cover crops on hairy galinsoga growth and seed production during cover crop growth grown before subsequent short duration vegetable crops; and 2) cover crop residues on establishment of hairy galinsoga and four short-duration vegetable crops planted after cover crop incorporation. The cover crops [buckwheat (Fagopyrum esculentum Moench), brown mustard (Brassica juncea L.), yellow mustard (Sinapis alba L.), and oats (Avena sativa L.)] were planted in May and incorporated in early July. Lettuce (Lactuca sativa L.) and Swiss chard [Beta vulgaris var. cicla (L.) K. Koch] were transplanted and pea (Pisum sativum L.) and snap bean (Phaseolus vulgaris L.) were sown directly into freshly incorporated residues. Aboveground dry biomass produced by the cover crops was 4.2, 6.4, 6.8, and 9.7 mg·ha−1 for buckwheat, brown mustard, yellow mustard, and oats, respectively. Cover crops alone reduced the dry weight (90% to 99%) and seed production of hairy galinsoga (98%) during the cover crop-growing season compared with weedy controls. In 2006, only yellow mustard residue suppressed hairy galinsoga emergence (53%). However, in 2007, all cover crop residues reduced hairy galinsoga emergence (38% to 62%) and biomass production (25% to 60%) compared with bare soil, with yellow mustard providing the greatest suppression. Cover crop residues did not affect snap bean emergence, but reduced pea emergence 25% to 75%. All vegetable crops were suppressed by all cover crop residues with crops ranked as: pea > Swiss chard ≥ lettuce > snap bean in terms of sensitivity. The C:N ratios were 8.5, 18.3, 22.9, and 24.8 for buckwheat, brown mustard, yellow mustard, and oat residues, respectively. Decomposition rate and nitrogen release of brown mustard and buckwheat residues was rapid; it was slow for oats and yellow mustard residues. Spring-sown cover crops can contribute to weed management by reducing seed production, emergence, and growth of hairy galinsoga in subsequent crops, but crop emergence and growth may be compromised. Yellow mustard and buckwheat sown before late-planted snap beans deserve further testing as part of an integrated strategy for managing weeds while building soil health.

2019 ◽  
Vol 11 (5) ◽  
pp. 58
Author(s):  
José Carlos Mazetto Júnior ◽  
José Luiz Rodrigues Torres ◽  
Danyllo Denner de Almeida Costa ◽  
Venâncio Rodrigues e Silva ◽  
Zigomar Menezes de Souza ◽  
...  

The decomposition of plant residues, the changes in the total organic carbon (TOC) and the fractions of soil organic matter (SOM) occur differently in irrigated areas. The objective of this study was to quantify the biomass production, the decomposition of cover crops residues and relate them with the changes n the content and fractions of SOM in an irrigated area of vegetable crops. Six types of cover crop treatments were evaluated: brachiaria (B); sunn hemp (S); millet (M); B + S; B + M; S + M, plus an additional treatment (native area), with 4 repetitions. The production of fresh (FB) and dry biomass (DB), the rate of plant residue decomposition, TOC, SOM fractions and the coefficient of SOM (QSOM) were quantified. It was observed that the greatest and the lowest volume of crop residues were from the B and S cover crop, respectively. The cover crops in monoculture presented great decomposition rates and short half-life when compared to mixtures of cover crop. The TOC and QSOM were great in the 0 to 0.05 m soil layer, and in the M + S cover crop mixture, when compared to the 0.05 to 0.1 m soil layer and to other cover crops. Among the SOM fractions, the humin predominated in the most superficial soil layer (0 to 0.05 m).


2016 ◽  
Vol 32 (5) ◽  
pp. 463-473 ◽  
Author(s):  
Rick A. Boydston ◽  
Martin M. Williams

AbstractFall-planted cover crops offer many benefits including weed suppressive residues in spring sown crops when controlled and left on the soil surface. However, vegetable growers have been slow to adopt direct-seeding (no-till) into cover crop residues. Field studies were conducted in 2009 and 2010 near Paterson, WA and Urbana, IL to evaluate mortality of rye and common vetch (WA) hairy vetch (IL) cover crops, weed density and biomass, and snap bean growth and yield following four cover crop control methods utilizing a roller–crimper. Rye had higher mortality than common and hairy vetch by roller-crimping, and carfentrazone applied after roller crimping only slightly increased vetch mortality. Heavy residues of rye and escaped vetch were difficult to plant into, often resulting in lower snap bean populations. Rye and hairy vetch residues suppressed final weed biomass, while common vetch reduced weed biomass 1 of 2 years. Escaped plants of both vetch species became a weed. Snap bean yields were inconsistent and often lower following cover crops compared with a fallow treatment. Being able to completely control cover crops and to plant, manage escaped weeds and mechanically harvest in the presence of heavy residues are challenges that deter vegetable growers from readily adopting these systems.


2004 ◽  
Vol 18 (4) ◽  
pp. 1023-1030 ◽  
Author(s):  
R. Edward Peachey ◽  
Ray D. William ◽  
Carol Mallory-Smith

The effect of planting system and cover crop residues on weed emergence in irrigated vegetable row crops was studied in field experiments from 1995 through 1997. Vegetable crops were either no-till planted (NTP) through cover crop residues or conventionally planted (CP) into soil with cover crop residues incorporated. NTP reduced emergence of hairy nightshade by 77 to 99% and Powell amaranth emergence by 50 to 87% compared with CP. Cover crop treatments were much less important than planting system in regulating weed emergence. Tillage in the spring did not increase the number of viable seeds near the soil surface. Hairy nightshade emergence ranged from 0.6 to 9.8% of the intact seeds in CP compared with 0 to 0.1% emergence of the seeds in the NTP plots. Powell amaranth emergence ranged from 4.9 to 6.5% of the intact seeds in CP contrasted with only 0.4 to 0.9% emergence of the seeds in NTP plots.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 427c-428
Author(s):  
Ed Peachey ◽  
Ray William

Altering the physical or chemical nature of the crop production environment through introduction of cover crops or other non-crop vegetation may amend the impact of various pests on vegetable crops. Current work is focused on the interaction of cereal cover crops and respective management systems with weed emergence and growth, white mold (Sclerotinia sclerotiorum) incidence, symphylan (Scutigerella immaculata) population dynamics, soil food-web structure, and crop yield in snap bean production systems. Research has demonstrated the potential of cover crop residues, tillage, and a single broadcast application of a postemergence herbicide to control summer annual weeds. Additionally, white mold incidence was significantly decreased by both reduced tillage conditions and flailed barley cover crop residues in one year of research. Two years of research indicate that symphylan density can be reduced by flailing spring-planted cereals before crop planting.


Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1041 ◽  
Author(s):  
Antonio Rodríguez-Lizana ◽  
Miguel Ángel Repullo-Ruibérriz de Torres ◽  
Rosa Carbonell-Bojollo ◽  
Manuel Moreno-García ◽  
Rafaela Ordóñez-Fernández

Cover crops (CC)s are increasingly employed by farmers in olive groves. Spontaneous soil cover is the most commonly used CC. Its continuous utilization changes ruderal flora. It is necessary to study new CCs. Living CCs provide C and nutrients to soil during decomposition. Information on this issue in olive groves is scarce. A 4-year field study involving grab sampling of Brachypodium distachyon, Sinapis alba and spontaneous CC residues was conducted to study C and nutrient release from cover crop residues. Throughout the decomposition cycles, C, N and P release accounted for 40 to 58% of the C, N and P amounts in the residues after mowing. Most K was released (80–90%). Expressed in kg per hectare, the release of C and N in Brachypodium (C: 4602, N: 181, P: 29, K: 231) and Sinapis (C: 4806, N: 152, P: 18, K: 195) was greater than that in spontaneous CC (C: 3115, N: 138, P: 21, K: 256). The opposite results were observed for K. The Rickman model, employed to estimate the amount of C, N and P in residues, yielded a good match between the simulated and measured values. In comparison to spontaneous CC, the newly proposed CCs have a higher potential to provide soil with C and N.


2020 ◽  
Author(s):  
Xin Shu ◽  
Yiran Zou ◽  
Liz Shaw ◽  
Lindsay Todman ◽  
Mark Tibbett ◽  
...  

<p>Cover crops are a contemporary tool to sustainably manage agricultural soils by boosting fertility, suppressing weeds and disease, and benefiting cash crop yields, thus securing future food supply. Due to the different chemical composition of crop residues from different plant families, we hypothesised that a mixture of cover crop residues may have a greater potential to improve soil health than the sum of the parts. Our experiment focused on the impact of four cover crops (clover, sunflower, radish and buckwheat) and their quaternary mixture on soil respiration and the soil microbial community in an 84-day microcosm experiment. On average adding cover crop residues significantly (P < 0.001) increased soil respiration from 29 to 343 µg C g<sup>-1</sup> h<sup>-1</sup> and microbial biomass from 18 to 60 µg C g<sup>-1</sup>, compared to the unamended control during 84 days’ incubation. Cover crop addition resulted in a significant (P < 0.001) alteration of the soil microbial community structure compared to that of the control. The quaternary mixture of cover crop residues significantly (P = 0.011) increased soil respiration rate by 23.79 µg C g<sup>-1</sup> h<sup>-1</sup> during the period 30 to 84 days after residue incorporation, compared to the average of the four individual residues. However, no significant difference in the size of the microbial biomass was found between the mixture and the average of the four individuals, indicating the mixture may invest resources which transit dormant microbial species into a metabolically active state and thus boost microbial respiration. Analysis of similarity of microbial community composition (ANOSIM) demonstrated the mixture significantly (P = 0.001) shifted microbial community structure away from buckwheat (R = 0.847), clover (R = 0.688), radish (R = 0.285) and sunflower (R = 0.785), respectively. This implies cover crop residues provide a niche specialization and differentiation on a selection of microbial communities that favour certain plant compounds. While applying cover crop residues has positive impacts on soil function, we found that applying a mixture of cover crop residues may provide greater potential to select for microorganisms or activate dormant microbial species which result in higher soil function. The outcome of this study will help seed suppliers to design, and farmers to select, novel cover crop mixtures which enhance soil function synergistically, leading to a greater potential to sustainably improve soil health.</p>


2011 ◽  
Vol 27 (2) ◽  
pp. 148-156 ◽  
Author(s):  
N.R. Hulugalle ◽  
L.A. Finlay ◽  
T.B. Weaver

AbstractCover crops in minimum or no-tilled systems are usually killed by applying one or more herbicides, thus significantly increasing costs. Applying herbicides at lower rates with mechanical interventions that do not disturb or bury cover crop residues can, however, reduce costs. Our objective was to develop a management system with the above-mentioned features for prostrate cover crops on permanent beds in an irrigated Vertisol. The implement developed consisted of a toolbar to which were attached spring-loaded pairs of parallel coulter discs, one set of nozzles between the individual coulter discs that directed a contact herbicide to the bed surfaces to kill the cover crop and a second set of nozzles located to direct the cheaper glyphosate to the furrow to kill weeds. The management system killed a prostrate cover crop with less trafficking, reduced the use of more toxic herbicides, carbon footprint, labor and risk to operators. Maximum depth of compaction was more but average increase was less than that with the boom sprayer control.


Plant Disease ◽  
1998 ◽  
Vol 82 (8) ◽  
pp. 945-952 ◽  
Author(s):  
Nicole M. Viaene ◽  
George S. Abawi

Host suitability for Meloidogyne hapla of six cover crops was tested in the greenhouse. Sudan-grass cv. Trudan 8 and rye (mixture of cultivars) were nonhosts; oat cv. Porter was a poor host; and phacelia cv. Angelia, oilseed radish cv. Renova, and yellow mustard cv. Martigena were maintenance hosts. When incorporated as a green manure before planting of lettuce cv. Mon-tello, sudangrass was the most effective of the cover crops in reducing egg production of M. hapla. Soil amendment with all parts of sudangrass resulted in lower reproduction of M. hapla on lettuce than soil amendment with only roots of sudangrass. Soil incorporation of 2-month-old (or younger) tissues of sudangrass was more effective in reducing nematode reproduction on subsequent lettuce plants than incorporation of 3-month-old tissues. Sudangrass was grown as a cover crop after lettuce for three growing seasons in field microplots and incorporated as a green manure before the first fall frost. Weight of lettuce heads was significantly higher and reproduction of M. hapla was significantly lower in sudangrass-amended microplots compared with those left fallow between lettuce crops, but results varied with year and nematode infestation level.


HortScience ◽  
2007 ◽  
Vol 42 (7) ◽  
pp. 1568-1574 ◽  
Author(s):  
E. Ryan Harrelson ◽  
Greg D. Hoyt ◽  
John L. Havlin ◽  
David W. Monks

Throughout the southeastern United States, vegetable growers have successfully cultivated pumpkins (Cucurbita pepo) using conventional tillage. No-till pumpkin production has not been pursued by many growers as a result of the lack of herbicides, no-till planting equipment, and knowledge in conservation tillage methods. All of these conservation production aids are now present for successful no-till vegetable production. The primary reasons to use no-till technologies for pumpkins include reduced erosion, improved soil moisture conservation, long-term improvement in soil chemical and microbial properties, and better fruit appearance while maintaining similar yields compared with conventionally produced pumpkins. Cover crop utilization varies in no-till production, whereas residue from different cover crops can affect yields. The objective of these experiments was to evaluate the influence of surface residue type on no-till pumpkin yield and fruit quality. Results from these experiments showed all cover crop residues produced acceptable no-till pumpkin yields and fruit size. Field location, weather conditions, soil type, and other factors probably affected pumpkin yields more than surface residue. Vegetable growers should expect to successfully grow no-till pumpkins using any of the winter cover crop residues tested over a wide range in residue biomass rates.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 428c-428
Author(s):  
Juan Carlos Gilsanz ◽  
D. C. Sanders ◽  
G. D. Hoyt

Rye plus crimson clover cover crops were followed by spring potato and fall snap bean or sorghum or fallow. The soil samples at 15 cm increments to 90 cm were evaluated for nitrate levels after each crop and cover crop. After the cover crops, soil nitrate levels were reduced relative to the fallow area. After the potato, crop soil nitrate levels increased above initial spring levels due a uniform fertilization due to the amount of N applied and short cycle of the crop. Snap beans and sorghum had increased plant stands and reduced soil impedance after fall cover crops. HOW nitrate levels varied with soil depth and time will be discussed.


Sign in / Sign up

Export Citation Format

Share Document