scholarly journals Seed Germination Biology of Four Pomegranate (Punica granatum) Cultivars from Xinjiang, China

HortScience ◽  
2015 ◽  
Vol 50 (6) ◽  
pp. 826-829 ◽  
Author(s):  
Dilinuer Shalimu ◽  
Ke Li ◽  
Carol C. Baskin ◽  
Jerry M. Baskin ◽  
Yujun Liu

Pomegranate is an important fruit crop cultivated in many countries, and development of new cultivars depends on the plant breeders being able to produce plants from seeds. Poor quality and low yield of cultivars are widespread problems that greatly restrict development of the pomegranate industry. Our purpose was to gain a better understanding of the seed dormancy-breaking and germination requirements of four cultivars of pomegranate from Xinjiang Province, China, which would be useful in improving old cultivars and developing new ones. Fresh pomegranate seeds incubated on moist filter paper imbibed water, but they germinated to only 16% to 20%. Sulfuric acid scarification, cold stratification, and warm followed by cold stratification significantly increased germination percentages. Seeds soaked in concentrated H2SO4 for 40 minutes followed by cold stratification for 2 months germinated to 65%, and those warm stratified for 1–3 months followed by cold stratification for 2 months germinated to 75% to 80%. Seeds of pomegranate have nondeep physiological dormancy (PD).

Horticulturae ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 490
Author(s):  
Saeng Geul Baek ◽  
Jin Hyun Im ◽  
Myeong Ja Kwak ◽  
Cho Hee Park ◽  
Mi Hyun Lee ◽  
...  

This study aimed to determine the type of seed dormancy and to identify a suitable method of dormancy-breaking for an efficient seed viability test of Lysimachia coreana Nakai. To confirm the effect of gibberellic acid (GA3) on seed germination at different temperatures, germination tests were conducted at 5, 15, 20, 25, 20/10, and 25/15 °C (12/12 h, light/dark), using 1% agar with 100, 250, and 500 mg·L−1 GA3. Seeds were also stratified at 5 and 25/15 °C for 6 and 9 weeks, respectively, and then germinated at the same temperature. Seeds treated with GA3 demonstrated an increased germination rate (GR) at all temperatures except 5 °C. The highest GR was 82.0% at 25/15 °C and 250 mg·L−1 GA3 (4.8 times higher than the control (14.0%)). Additionally, GR increased after cold stratification, whereas seeds did not germinate after warm stratification at all temperatures. After cold stratification, the highest GR was 56.0% at 25/15 °C, which was lower than the GR observed after GA3 treatment. We hypothesized that L. coreana seeds have a non-deep physiological dormancy and concluded that 250 mg·L−1 GA3 treatment is more effective than cold stratification (9 weeks) for L. coreana seed-dormancy-breaking.


2020 ◽  
Vol 21 (19) ◽  
pp. 7008
Author(s):  
Tomasz A. Pawłowski ◽  
Barbara Bujarska-Borkowska ◽  
Jan Suszka ◽  
Tadeusz Tylkowski ◽  
Paweł Chmielarz ◽  
...  

Temperature is a key environmental factor restricting seed germination. Rose (Rosa canina L.) seeds are characterized by physical/physiological dormancy, which is broken during warm, followed by cold stratification. Exposing pretreated seeds to 20 °C resulted in the induction of secondary dormancy. The aim of this study was to identify and functionally characterize the proteins associated with dormancy control of rose seeds. Proteins from primary dormant, after warm and cold stratification (nondormant), and secondary dormant seeds were analyzed using 2-D electrophoresis. Proteins that varied in abundance were identified by mass spectrometry. Results showed that cold stratifications affected the variability of the highest number of spots, and there were more common spots with secondary dormancy than with warm stratification. The increase of mitochondrial proteins and actin during dormancy breaking suggests changes in cell functioning and seed preparation to germination. Secondary dormant seeds were characterized by low levels of legumin, metabolic enzymes, and actin, suggesting the consumption of storage materials, a decrease in metabolic activity, and cell elongation. Breaking the dormancy of rose seeds increased the abundance of cellular and metabolic proteins that promote germination. Induction of secondary dormancy caused a decrease in these proteins and germination arrest.


2000 ◽  
Vol 78 (9) ◽  
pp. 1199-1205 ◽  
Author(s):  
Siti N Hidayati ◽  
Jerry M Baskin ◽  
Carol C Baskin

Dormancy-breaking requirements and type of dormancy were determined for seeds of Diervilla lonicera Mill. Seeds have an underdeveloped linear embryo that is about 35% of the length of the seed at maturity. Embryos (in intact seeds) grew at 25:15°C but not at 5°C. Up to 85% of the freshly matured seeds had morphological dormancy (MD), and thus, they germinated within about 30 days on a moist substrate in light at 30:15°C; a maximum of 3% of the seeds germinated in constant darkness. The other portion of fresh seeds had nondeep simple morphophysiological dormancy (MPD) and required a period of warm stratification or treatment with GA3 to break dormancy. These seeds also required light to germinate. In contrast, cold stratification induced dormancy, and dry storage for up to 1 year did not effectively break dormancy. Seeds with MD germinated to significantly higher percentages on soil than on filter paper or on sand. Seeds sown on soil in a non-temperature-controlled greenhouse in mid-November germinated mostly in late May, whereas those sown in mid-April germinated in early May. Apparently, embryos of November-sown seeds were induced into physiological dormancy during winter. Thus, seeds had MPD in spring and needed several weeks of warm temperatures for dormancy break, embryo growth, and germination. This is the first report on seed dormancy in the genus Diervilla.Key words: embryo growth, germination phenology, Diervilla lonicera, morphological seed dormancy, morphophysiological seed dormancy, underdeveloped linear embryo.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1765
Author(s):  
Wei Zhang ◽  
Lian-Wei Qu ◽  
Jun Zhao ◽  
Li Xue ◽  
Han-Ping Dai ◽  
...  

The innate physiological dormancy of Tulipa thianschanica seeds ensures its survival and regeneration in the natural environment. However, the low percentage of germination restricts the establishment of its population and commercial breeding. To develop effective ways to break dormancy and improve germination, some important factors of seed germination of T. thianschanica were tested, including temperature, gibberellin (GA3) and/or kinetin (KT), cold stratification and sowing depth. The percentage of germination was as high as 80.7% at a constant temperature of 4 °C, followed by 55.6% at a fluctuating temperature of 4/16 °C, and almost no seeds germinated at 16 °C, 20 °C and 16/20 °C. Treatment with exogenous GA3 significantly improved the germination of seeds, but KT had a slight effect on the germination of T. thianschanica seeds. The combined treatment of GA3 and KT was more effective at enhancing seed germination than any individual treatment, and the optimal hormone concentration for the germination of T. thianschanica seeds was 100 mg/L GA3 + 10 mg/L KT. In addition, it took at least 20 days of cold stratification to break the seed dormancy of T. thianschanica. The emergence of T. thianschanica seedlings was the highest with 82.4% at a sowing depth of 1.5 cm, and it decreased significantly at a depth of >3.0 cm. This study provides information on methods to break dormancy and promote the germination of T. thianschanica seeds.


2009 ◽  
Vol 19 (2) ◽  
pp. 115-123 ◽  
Author(s):  
Filip Vandelook ◽  
Nele Bolle ◽  
Jozef A. Van Assche

AbstractA low-temperature requirement for dormancy break has been observed frequently in temperate-climate Apiaceae species, resulting in spring emergence of seedlings. A series of experiments was performed to identify dormancy-breaking requirements of Aegopodium podagraria, a nitrophilous perennial growing mainly in mildly shaded places. In natural conditions, the embryos in seeds of A. podagraria grow in early winter. Seedlings were first observed in early spring and seedling emergence peaked in March and April. Experiments using temperature-controlled incubators revealed that embryos in seeds of A. podagraria grow only at low temperatures (5°C), irrespective of a pretreatment at higher temperatures. Seeds did not germinate immediately after embryo growth was completed, instead an additional cold stratification period was required to break dormancy completely. Once dormancy was broken, seeds germinated at a range of temperatures. Addition of gibberellic acid (GA3) had a positive effect on embryo growth in seeds incubated at 10°C and at 23°C, but it did not promote germination. Since seeds of A. podagraria have a low-temperature requirement for embryo growth and require an additional chilling period after completion of embryo growth, they exhibit characteristics of deep complex morphophysiological dormancy.


2020 ◽  
Vol 30 (3) ◽  
pp. 199-205
Author(s):  
Tracy S. Hawkins

AbstractQuercus species are ecologically and economically important components of deciduous forests of the eastern United States. However, knowledge pertinent to a thorough understanding of acorn germination dynamics for these species is lacking. The objectives of this research were to determine dormancy break and germination requirements for acorns of two eastern United States bottomland species, Quercus nigra and Quercus phellos (Section Lobatae), and to present results within ecological and phylogenetic contexts. Three replicates of 50 acorns of each species received 0 (control), 6, 12 or 18 weeks of cold stratification, followed by incubation in alternating temperature regimes of 15/6, 20/10, 25/15 and 30/20°C. Eighteen weeks of cold stratification were not sufficient for dormancy break in Q. nigra acorns. Cumulative germination percentages at 4 weeks of incubation were ≥77%, but only in incubation temperatures of 25/15 and 30/20°C. Dormancy break in Q. phellos acorns was achieved with 18 weeks of cold stratification, and cumulative germination percentages were ≥87% at 4 weeks of incubation in all test temperature regimes. Gibberellic acid solutions were not an effective substitute for cold stratification in either species. Phylogenetically, Q. nigra and Q. phellos are closely related species and, ecologically, both grow in the same habitat. Acorns of both species possess deep physiological dormancy (PD), but dormancy break and germination requirements differ in acorns of these two Quercus species.


HortScience ◽  
1990 ◽  
Vol 25 (2) ◽  
pp. 191-193 ◽  
Author(s):  
Phil S. Allen ◽  
Susan E. Meyer

To determine optimum germination temperatures and effective dormancy-breaking procedures, field-grown (1983-85) seeds of `Bandera' Rocky Mountain penstemon (Penstemon strictus Benth), `Cedar' Palmer penstemon (Penstemon palmeri Gray), and firecracker penstemon (Penstemon eatonii Gray) were subjected to various cold stratification and incubation temperature treatments. Increased germination following an 8-week stratification occurred in seed lots containing dormant seeds, but a 2-week stratification generally failed to break dormancy. Older (1983) seeds of `Bandera' and `Cedar' penstemon germinated to full viability without stratification. All species showed a marked decrease in germination percentage above 20C; 15C consistently produced maximum germination after 4 weeks. At 15C, mean times to 90% of total germination were 11, 22, and 29 days for `Bandera', `Cedar', and firecracker penstemon, respectively. Transfer of seeds failing to germinate at warm temperatures (25 and 30C) to 15C and applying 720 μm gibberellic acid (GA3) solution was effective in breaking primary dormancy of firecracker penstemon and secondary dormancy of `Bandera' penstemon. Our findings suggest that incubation below 20C, combined with 8 weeks of stratification or the use of after-ripened seed, may improve seed propagation efforts for these species.


1997 ◽  
Vol 7 (1) ◽  
pp. 47-58 ◽  
Author(s):  
Jeffrey L. Walck ◽  
Jerry M. Baskin ◽  
Carol C. Baskin

AbstractSolidago shortiiis endemic to a small area in northcentral Kentucky (USA), whereas two of its sympatric congeners,S. altissimaandS. nemoralis, are geographically widespread. Seeds (achenes) ofS. shortii(0.370 mg) are significantly larger (PLSD,P=0.05) than those ofS. altissima(0.070 mg) andS. nemoralis(0.068 mg). Germination percentages of freshly-matured seeds of the threeSolidagospecies collected in November 1991, 1992 and 1994 were 0–2% in light at 15/6°C, 1–37% at 20/10°C, 9–56% at 25/15°C and 10–85% at 30/15 and 35/20°C. Stratification increased the percentage and rate of germination and decreased the time to the onset of germination (measured by Timson's index only at 20/10°C in light) in the three species. Following 12 weeks of cold stratification in light, seeds of the three species germinated to 72–100% in the light and to 22–100% in darkness over the range of thermoperiods; those cold-stratified in darkness germinated to 39–100% in light. Freshly-matured seeds ofS. altissimaand ofS. nemoralisgerminated to 0–4% in darkness, whereas those cold-stratified for 12 weeks in darkness germinated to 0–28% in darkness. On the other hand, freshly-matured and cold-stratified (in darkness) seeds ofS. shortiigerminated to 0–13 and 13–73%, respectively, in darkness. Under near-natural temperatures in a glasshouse without temperature control, germination of the three species peaked in March. Thus, the primary difference in dormancy-breaking and germination requirements of the three species is that the endemic germinates to a much higher percentage in darkness than its two congeners. Seeds ofS. shortiido not have any special dormancy-breaking or germination requirements that could not be fulfilled outside its present-day geographic range.


2014 ◽  
Vol 24 (4) ◽  
pp. 301-314 ◽  
Author(s):  
Mihray Nur ◽  
Carol C. Baskin ◽  
Juan J. Lu ◽  
Dun Y. Tan ◽  
Jerry M. Baskin

AbstractAlthough Asteraceae species are important in the cold deserts of Central Asia, little is known about their seed dormancy and germination. We determined dormancy breaking and germination requirements of three annual Asteraceae, Echinops gmelinii, Epilasia acrolasia and Koelpinia linearis. Achenes (seeds) were tested for germination in light and in darkness over a range of alternating temperatures after various periods of burial outdoors and of dry storage. Germination phenology was monitored for seeds sown in irrigated and non-irrigated sand, and temperature requirements for dormancy break were determined under wet and dry conditions. Effects of pericarp and phyllaries on germination of E. acrolasia and E. gmelinii, respectively, were determined. Low percentages of 20-day-old seeds of E. acrolasia and K. linearis were non-dormant and germinated to low percentages over the range of temperatures, whereas all seeds of E. gmelinii were dormant. As seeds of the three species afterripened, they germinated over the range of temperatures. Whether seeds germinated in autumn or spring depended on the amount of sand moisture. Mechanical resistance of the pericarp and phyllaries reduced germination of E. acrolasia and E. gmelinii, respectively. Temperature requirements for germination as seeds come out of dormancy do not correspond to any of the known five types of non-deep physiological dormancy (PD). Thus, a sixth type is recognized in which germination occurs over the same range of temperatures in the early and late stages of dormancy break. Type 6 allows seeds to germinate at high or at low temperatures, whenever sand moisture is non-limiting.


2020 ◽  
Vol 24 ◽  
pp. 00077
Author(s):  
Nana Shakarishvili

Paederotella pontica is a Colchis tertiary relict species, regional narrow endemic to the Caucasus, representative of an oligotypic genus. The aim of this study was to determine dormancy-breaking requirements and develop seed germination protocol for P. pontica. Freshly matured seeds of P. pontica are morphophysiologically dormant (MPD). Mean length of seed is 820 μm, linear embryo is fully differentiated, on average 625 μm long. Penetration of tetrazolium salt indicates the permeability of seed coat and high percentage of vital seeds in capsules. Prior to root emergence, the E:S ratio increased from 0.76 to 0.9. Effects of warm and cold stratification and gibberellic acid (GA3) on embryo growth and seed germination were studied under laboratory conditions. Since cold stratification is the only requirement for the loss of MPD, the longest embryo growth occurred during this treatment and GA3 promoted MPD loss, we concluded that P. pontica seeds have intermediate complex MPD. Based on the treatment results a germination protocol is proposed: 1. Dry storage at 20°C, 2 months; 2. Cold-wet stratification at 3°C, 3 months; 3. Germination at 20/15°C day/night. Under developed conditions germination is fast, synchronous and yields to 80%.


Sign in / Sign up

Export Citation Format

Share Document