scholarly journals Optimizing Irrigation of Fresh Market Tomato Grown in the Mid-Atlantic United States

2013 ◽  
Vol 23 (6) ◽  
pp. 859-867 ◽  
Author(s):  
Catherine S. Fleming ◽  
Mark S. Reiter ◽  
Joshua H. Freeman ◽  
Rory Maguire

Determining irrigation requirements for fresh market tomato (Solanum lycopersicum) production is essential to obtain optimum yields, cost-effective water use, and minimize nitrate leaching. The objective of this study was to determine the appropriate irrigation rate for polyethylene-mulched fresh market tomato grown in Virginia. This study investigated irrigation regimes by applying water based on evapotranspiration (ET) calculations in three spring and three fall seasons. Plants were grown using 0.0 × ET, 0.5 × ET, 1.0 × ET, 1.5 × ET, and 2.0 × ET. Additional irrigation treatments involved tensiometers installed at 12-inch depth in the bed, programmed to irrigate at soil moisture set points of −20, −40, and −60 kPa. Tensiometer treatments were able to irrigate up to nine times per day if soil moisture fell below the designated moisture set point. Measurements included fruit yield, plant and fruit nitrogen (N) uptake, and inorganic soil nitrate-N (NO3-N) at 0 to 10-, 10 to 20-, and 20 to 30-inch depths. Overall, the 0.5 × ET treatment provided optimum yields in all growing seasons except Spring 2010, which was unseasonably hot and dry. A tensiometer treatment (−40 kPa) provided optimum yields in all growing seasons, and was able to adjust irrigation in a hot and dry season. Residual soil NO3-N at 0 to 10 inches generally exhibited an inverse relationship with yield; greater yields resulted in less residual soil NO3-N. In most treatments throughout the duration of this study, plant N uptake + fruit N uptake accounted for most of the N fertilizer applied (68% to 151%). In conclusion, an irrigation rate of 0.5 × ET and a tensiometer treatment (−40 kPa) provided minimal irrigation inputs to obtain optimum marketable yields while also minimizing residual soil nitrate that may be prone to leaching after the season.

2004 ◽  
Vol 84 (1) ◽  
pp. 129-142 ◽  
Author(s):  
S. Bittman ◽  
B. J. Zebarth ◽  
C. G. Kowalenko ◽  
D. E. Hunt

This study compared the response of harvests taken in May, June, August and September-October in terms of crop responses (yield, N uptake, and concentrations of crude protein and nitrate) to N fertilizer and residual soil nitrate and ammonium. Three trials were conducted in south coastal British Columbia in 1990–1992 to evaluate the response of an established sward of orchardgrass (Dactylis glomerata L.) to a range of N fertilizer rates. Both yields and daily crop growth rates were highest in cut 1, lowest in cut 4 and intermediate in cuts 2 and 3. For all four cuts, 95 and 90% of maximum yield was attained at about 136 and 82 kg ha-1 of applied N, respectively. Crop N supply from non-fertilizer sources ranged from 36 to 90 kg N ha-1, of which about 52% was attributed to nitrate present in the soil prior to growth and about 48% was N released from the soil, translocated from roots or deposited from the atmosphere. At 95% of maximum yield, crude protein concentrations ranged from 147 g kg-1 in the higher yielding cut 1 to 189 g kg-1 in cuts 2 and 4, while at 90% of maximum yield concentrations were 10 g kg-1 lower in each cut. Plant nitrate concentrations were close to levels that are toxic to cattle for the 95% target yield, but relatively safe at the 90% yield. The crop removed about 50 kg ha-1 more N when fertilized for 95% of maximum yield than for 90%, which translates to over 300 kg ha-1 more crude protein. High relative yield leaves behind more soil nitrate after harvest. The results suggest that the first cut should be managed for 95% of maximum yield with about 130 kg N ha-1. Cuts 2 and 3 should be managed for 90% of maximum yield, to avoid high plant nitrate concentrations, with 100–110 kg N ha-1. Cut 4 should be given no more than 50 kg N ha-1 for less than 90% of maximum yield because of the risk of residual soil nitrates. This study shows for the first time the benefits and disadvantages of applying N at different rates for each harvest over the growing season. Key words: Plant nitrate, nitrogen use efficiency, nitrogen recovery, Dactylis glomerata, relative yield, maximum economic yield


2020 ◽  
Author(s):  
Pauline Sophie Rummel ◽  
Reinhard Well ◽  
Birgit Pfeiffer ◽  
Klaus Dittert ◽  
Sebastian Floßmann ◽  
...  

<p>Growing plants affect soil moisture, mineral N and organic C (C<sub>org</sub>) availability in soil and may thus play an important role in regulating denitrification. The availability of the main substrates for denitrification (C<sub>org</sub> and NO<sub>3</sub><sup>-</sup>) is controlled by root activity and higher denitrification activity in rhizosphere soils has been reported. We hypothesized that (I) plant N uptake governs NO<sub>3</sub><sup>-</sup> availability for denitrification leading to increased N<sub>2</sub>O and N<sub>2</sub> emissions, when plant N uptake is low due to smaller root system or root senescence. (II) Denitrification is stimulated by higher C<sub>org</sub> availability from root exudation or decaying roots increasing total gaseous N emissions while decreasing their N<sub>2</sub>O/(N<sub>2</sub>O+N<sub>2</sub>) ratios.</p><p>We tested these assumptions in a double labeling pot experiment with maize (Zea mays L.) grown under three N fertilization levels S / M / L (no / moderate / high N fertilization) and with cup plant (Silphium perfoliatum L., moderate N fertilization). After 6 weeks, all plants were labeled with 0.1 g N kg<sup>-1</sup> (Ca(<sup>15</sup>NO<sub>3</sub>)<sub>2</sub>, 60 at%), and the <sup>15</sup>N tracer method was applied to estimate plant N uptake, N<sub>2</sub>O and N<sub>2</sub> emissions. To link denitrification with available C in the rhizosphere, <sup>13</sup>CO<sub>2</sub> pulse labeling (5 g Na<sub>2</sub><sup>13</sup>CO<sub>3</sub>, 99 at%) was used to trace C translocation from shoots to roots and its release by roots into the soil. CO<sub>2</sub> evolving from soil was trapped in NaOH for δ<sup>13</sup>C analyses, and gas samples were taken for analysis of N<sub>2</sub>O and N<sub>2</sub> from the headspace above the soil surface every 12 h.</p><p>Although pots were irrigated, changing soil moisture through differences in plant water uptake was the main factor controlling daily N<sub>2</sub>O+N<sub>2</sub> fluxes, cumulative N emissions, and N<sub>2</sub>O production pathways. In addition, total N<sub>2</sub>O+N<sub>2</sub> emissions were negatively correlated with plant N uptake and positively with soil N concentrations. Recently assimilated C released by roots (<sup>13</sup>C) was positively correlated with root dry matter, but we could not detect any relationship with cumulative N emissions. We anticipate that higher C<sub>org</sub> availability in pots with large root systems did not lead to higher denitrification rates as NO<sub>3</sub><sup>-</sup> was limited due to plant uptake. In conclusion, plant growth controlled water and NO<sub>3</sub><sup>-</sup> uptake and, subsequently, formation of anaerobic hotspots for denitrification.</p>


2000 ◽  
Vol 10 (2) ◽  
pp. 331-336 ◽  
Author(s):  
Thomas F. Morris ◽  
George Hamilton ◽  
Sara Harney

There is little published data to support current recommended plant populations of 11,500 to 17,500 plants/acre (28,600 to 34,600 plants/ha) for fresh market sweet corn (Zea mays L.) in the northeastern United States. The plant population likely affects marketable yield and recovery of nitrate. Residual soil nitrate is of concern because of the potential for nitrate contamination of water supplies. Our objectives were to determine the effect of plant population on the yield of sweet corn grown for fresh market without irrigation and on the amount of nitrate in the surface 1 ft (30 cm) of soil at harvest. Seven main-season sweet corn varieties were planted in a total of eight experiments in 1995, 1996, and 1997. Seven experiments were in Connecticut and one was in New Hampshire. All but one of the varieties were standard (su) or sugary enhanced (se) varieties. The experimental design was a randomized complete block with four replications, and the treatments consisted of 12,000, 16,000, 20,000, 24,000, and 28,000 plants/acre (29,600, 39,500, 49,400, 59,300, and 69,200 plants/ha). The yield of marketable ears was classified based on the length of the ears. The results suggest that the current recommendations for plant population in the Northeast US may be too low. Populations of 20,000 and 24,000 plants/acre produced consistently greater yields of ears greater than 7.0 inches (178 mm) long. Soil nitrate-N concentrations at harvest were about 8 mg·kg-1 lower with 16,000 plants/acre or greater, compared with 12,000 plants/acre, which suggests that populations of 16,000/acre or greater should decrease the potential for nitrate contamination of water supplies in the fall, winter, and early spring.


1983 ◽  
Vol 63 (1) ◽  
pp. 125-136 ◽  
Author(s):  
P. B. HOYT ◽  
R. H. LEITCH

Effects of five legume species grown for hay on yield of succeeding barley crops and on moisture and N status of five soils were measured. When N fertilizer was applied, yields of barley following alfalfa, birdsfoot trefoil, alsike clover, red clover and sweet clover were the same as those following barley grown on fallow (control). Also, soil moisture in spring and soil moisture used by barley were about the same following legumes and the control. However, without N fertilizer, the legumes caused large yield increases to barley grown on two Gray Luvisolic soils (Beryl, Davis) and a Black Solodic soil (Landry); the legumes caused little change in barley yields on another Gray Luvisolic soil (Alcan) and caused large decreases on another Black Solodic soil (Rycroft). Residual soil N contributed by the legumes, calculated from N in the succeeding barley crops, was greater for the Beryl and Landry soils than for the Alcan and Davis soils. This corresponded closely to yields of the previous hay crops on those soils. The legumes caused a decrease in residual N for the Rycroft soil. Mineral-N and Δ mineral-N in the soil were well correlated with N uptake in barley for the Alcan, Landry and Rycroft soils but were poorly correlated for the other two soils. Key words: Forage legumes, barley yields, soil nitrogen and moisture


1991 ◽  
Vol 27 (3) ◽  
pp. 269-279 ◽  
Author(s):  
J. P. Wright ◽  
J. L. Posner ◽  
J. D. Doll

SummaryThe growing season in the semi-arid region of West Africa is drought prone and of irregular duration. Two experiments were conducted in 1986 and 1987 to test the effects of flat cultivation and tied ridge cultivation (TRC) on the yields of maize and the component crops of a maize and cowpea relay cropping system. The two research sites, with slopes of 0.05% and 3%, were near Sapu, The Gambia, on an Aridic Kandiustalf in the 700 mm rainfall zone.Both growing seasons had above average rainfall. In both years, maize on level sites showed no response to tillage practices. On the sloped site in 1987, soil moisture 10 and 15 days after the last rain was greater with TRC than with flat cultivation and yields of sole cowpea and maize were 25% and 18% greater, respectively. On the level site, TRC had no effect on residual soil moisture or grain yield. When rainfall was well distributed, tied ridging did not appear to be a viable tillage alternative for maize-based systems on flat land in central Gambia but with modest slopes, tied ridges markedly increased soil water reserves in the 0.15 to 0.60 m depth after maize harvest.


Agriculture ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 752
Author(s):  
Aliasghar Montazar ◽  
Daniel Geisseler ◽  
Michael Cahn

Nitrogen (N) and irrigation water must be effectively used in mineral soils to produce carrots with high yield and minimal environmental impact. This study attempts to identify optimal N and irrigation management practices for low desert carrot production in California by investigating consumptive water use and N uptake and removal rates in fresh market and processing carrots. Field experiments were conducted at the University of California Desert Research and Extension Center and nine farmer fields during two growing seasons. The actual evapotranspiration (ETa) was measured using the residual energy balance method with a combination of surface renewal and eddy covariance equipment. Crop canopy coverage, actual soil nitrate-N from multiple depths as well as total N percentage, dry matter, and fresh biomass in roots and tops were measured over the growing seasons. The length of the crop season had a wide range amongst the experimental sites: from a 128-day period in a processing carrot field to as long as 193 days in a fresh market carrot field. The seasonal ETa varied between 305.8 mm at a silty loam furrow irrigated processing carrot field and 486.2 mm at a sandy clay loam sprinkler irrigated fresh market field. The total N accumulated at harvest ranged between 205.4 kg ha−1 (nearly 52% in roots) and 350.5 kg ha−1 (nearly 64% in roots). While the mean value of nitrogen removed by carrot roots varied from 1.24 to 1.73 kg N/Mg carrot roots, it appears that more N was applied than was removed by carrot roots at all sites. Within the range of N application rates examined at the experimental sites, there was no significant relationship between carrot fresh root yield and N application rate, although the results suggested a positive effect of N application on carrot yield. Sufficient soil N availability over the growing season and the lack of significant yield response to N application illuminated that optimal N rates are likely less than the total amounts of N applied at most sites.


2021 ◽  
Author(s):  
Pauline Sophie Rummel ◽  
Reinhard Well ◽  
Birgit Pfeiffer ◽  
Klaus Dittert ◽  
Sebastian Floßmann ◽  
...  

<p>The main prerequisites for denitrification are availability of nitrate (NO<sub>3</sub><sup>-</sup>) and easily decomposable organic substances, and oxygen deficiency. Growing plants modify all these parameters and may thus play an important role in regulating denitrification. Previous studies investigating plant root effects on denitrification have found contradictive results. Both increased and decreased denitrification in the presence of plants have been reported and were associated with higher C<sub>org</sub> or lower NO<sub>3</sub><sup>-</sup> availability, respectively. Accordingly, it is still unclear whether growing plants stimulate denitrification through root exudation or restrict it through NO<sub>3</sub><sup>-</sup> uptake. Furthermore, reliable measurements of N<sub>2</sub> fluxes and N<sub>2</sub>O/(N<sub>2</sub>O+N<sub>2</sub>) ratios in the presence of plants are scarce.</p><p>Therefore, we conducted a double labeling pot experiment with either maize (<em>Zea mays</em> L.) or cup plant (<em>Silphium perfoliatum</em> L.) of the same age but differing in size of their shoot and root systems. The <sup>15</sup>N gas flux method was applied to directly quantify N<sub>2</sub>O and N<sub>2</sub> fluxes in situ. To link denitrification with available C in the rhizosphere, <sup>13</sup>CO<sub>2</sub> pulse labeling was used to trace C translocation from shoots to roots and its release by roots into the soil.</p><p>Plant water uptake was a main factor controlling soil moisture and, thus, daily N<sub>2</sub>O+N<sub>2</sub> fluxes, cumulative N emissions, and N<sub>2</sub>O production pathways. However, N fluxes remained on a low level when NO<sub>3</sub><sup>-</sup> availability was low due to rapid plant N uptake. Only when both N and water uptake were low, high NO<sub>3</sub><sup>-</sup> availability and high soil moisture led to strongly increased denitrification-derived N losses.</p><p>Total CO<sub>2</sub> efflux was positively correlated with root dry matter, but there was no indication of any relationship between recovered <sup>13</sup>C from root exudation and cumulative N emissions. We anticipate that higher C<sub>org</sub> availability in pots with large root systems did not lead to higher denitrification rates, as NO<sub>3</sub><sup>-</sup> was limiting denitrification due to plant N uptake. Overall, we conclude that root-derived C stimulates denitrification only when soil NO<sub>3</sub><sup>-</sup> is not limited and low O<sub>2</sub> concentrations enable denitrification. Thus, root-derived C may stimulate denitrification under small plants, while N and water uptake become the controlling factors with increasing plant and root growth.</p>


2021 ◽  
Vol 13 (5) ◽  
pp. 50
Author(s):  
Kabal S. Gill ◽  
Surinder K. Jalota

Understanding the root growth and changes in soil moisture content during the growing season for dryland agriculture crops can improve crop production. It was hypothesized that early-season root growth might be influenced by previous crop and current crops, and soil moisture content and depletion pattern during the growing season and residual soil moisture may be affected by the crop type. A study was conducted on the early-season root growth of canola (Brassica napus L.), wheat (Triticum aestivum L.), and flax (Linum usitatissimum L.) in 2015; and changes in soil water content during the 2013, 2014, and 2015 growing seasons under canola, flax, wheat, barley (Hordeum vulgare L.), and pea (Pisum sativum L.). Early-season root growth of the canola and flax crops was better on wheat than canola stubble, while for wheat it was similar on the stubbles of both wheat and canola. Soil moisture depletion started relatively earlier under the barley and wheat and later under the flax compared to the canola and pea crops. Flax continued to deplete soil moisture for a longer period than the other crops. With some exceptions, all crops could deplete soil moisture to a similar level (down to about 15% or somewhat lower) by the end of their growing seasons. Generally, almost equal amounts of residual soil moisture remained after the different crops.


Sign in / Sign up

Export Citation Format

Share Document