scholarly journals Ethylene + GA3 Sprays for Delaying Flower Bud Initiation in Chrysanthemum (Dendranthema grandiflora Tzvelv.) Stock Plants

1996 ◽  
Vol 6 (3) ◽  
pp. 251-253 ◽  
Author(s):  
Mark S. Strefeler ◽  
Neil O. Anderson ◽  
Peter D. Ascher

Our objective was to determine whether repeated applications of 2-chloroethylphosphonic acid (ethephon) + gibberellic acid (GA3) to stock chrysanthemum plants that are day-neutral for flower bud initiation would increase the number of quality cuttings. Across five cultivars, there were no significant differences between controls and plants receiving 250 ppm ethephon in the total number of cuttings per plant. The percentage of cuttings with crown buds was greater for cuttings from controls than for ethephon-treated plants. Applying 500 ppm ethephon significantly reduced the number of cuttings. We conclude that chrysanthemum clones day-neutral for flower bud initiation and development with low long-day leaf number could be selected to form a 4 to 5 week production group.

2001 ◽  
Vol 126 (6) ◽  
pp. 710-721 ◽  
Author(s):  
Neil O. Anderson ◽  
Peter D. Ascher

Commercial garden and greenhouse chrysanthemums [Dendranthema ×grandiflora (Ramat.) Kitam. (syn. Chrysanthemum xmorifolium Ramat.)] are facultative short-day plants for flower bud initiation, obligate short-day plants for flower bud development, and are categorized into short-day response groups. Flower initiation can be delayed by high night temperatures. Recent research has identified true day-neutral genotypes. The purpose of this investigation was to test environments for selecting genotypes that are both day-neutral and heat-delay insensitive. One greenhouse and 18 garden genotypes were selected. A series of environments were used to select for day-neutral genotypes and then differentiate between these genotypes for heat delay insensitivity: short days, long days/red light, long days/far red light and high temperatures, and natural day lengths under field conditions. Day-neutral selections from these environments were then grown in a fifth environment of long days/continuous far red and red light with high temperature. Data were collected on the number of days to first and third flower, long day leaf number, stem length, number of strap-shaped leaves subtending the terminal flower, internode lengths, number of nodes with axillary branching, and flower bud development of the first to the sixth flowers. Genotypes required 3 to 8 weeks for complete flower bud initiation/development. Flowering responses in the first four environments were highly significant for both the first and third flowers. Genotypes ranged from obligate short-day to day-neutral for the first six flowers. Three day-neutral genotypes were selected that differed significantly for all traits in the fifth environment; flower bud development with the first six flowers occurred with only one genotype, 83-267-3. Broad sense heritability estimates ranged from h2 = 0.75 for number of nodes with axillary branching, h2 = 0.79 for long day leaf number and number of strap-shaped leaves, to h2 = 0.91 for stem length. An ideotype for day-neutral and heat-delay-insensitive garden chrysanthemums was developed for use in breeding programs.


2006 ◽  
Vol 131 (4) ◽  
pp. 437-444 ◽  
Author(s):  
Grete Waaseth ◽  
Roar Moe ◽  
Royal D. Heins ◽  
Svein O. Grimstad

Varying photothermal ratios (PTR) were supplied to Salvia ×superba Stapf `Blaukönigin' during pre-inductive vegetative development with the exception of a short germination period under uniform conditions. In addition, both unvernalized plants and plants receiving a saturating vernalization treatment of 6 weeks at 5 °C were given two photosynthetic photon flux (PPF) levels (50 or 200 μmol·m-2·s-1) during subsequent inductive 16-hour long days. There were no effects of PTR treatments during vegetative development on subsequent flowering. However, the higher PPF level during inductive long days significantly accelerated floral evocation in unvernalized plants, lowering the leaf number at flowering. The effect was practically negligent after the vernalization requirement was saturated. In a second experiment, varying periods (4, 7, 10, and 14 days or until anthesis) at a PPF of 200 μmol·m-2·s-1 during 20-hour days were given at the beginning of a long-day treatment, either with or without preceding vernalization treatment. Flowering percentage increased considerably as the period at 200 μmol·m-2·s-1 was extended compared with plants grown at a lower PPF of 50 μmol·m-2·s-1. However, the leaf number on flowering plants was not affected, except in unvernalized plants receiving the highest PPF continuously until anthesis, where leaf number was reduced by almost 50%. We propose that the PPF-dependent flowering is facilitated either by the rate of ongoing assimilation or rapid mobilization of stored carbohydrates at the time of evocation. Abortion of floral primordia under the lower PPF (50 μmol·m-2·s-1) irrespective of vernalization treatment indicates that the assimilate requirement for flower bud development is independent of the mechanism for floral evocation.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 470C-470 ◽  
Author(s):  
Neil O. Anderson

Seed-propagated lilies have the potential to revolutionize Easter lily production, eliminating clonal disease transmission, costly production and shipping. Five F1 interspecific hybrids, Lilium × formolongo (L. longiflorum × L. formosanum), were evaluated to establish an initial forcing schedule. The hybrids included `Raizan Herald', `Augusta F1', `Raizan No. 1', `Raizan No. 2', and `Raizan No. 3'. Two hundred seeds/hybrid were sown in early July in plug trays. Ten weeks after sowing, seedlings were transplanted into 3-inch pots. At the 20-week stage, the seedlings were repotted into 6-inch standard pots for the final production phase. All hybrids had low germination rates (<20%). Hybrids were grown under two photoperiod treatments (short, long days) at 21 °C with n = 10 reps/hybrid/treatment. Plants were evaluated for no. days to visible bud, leaf unfolding rate, final plant height, leaf number, bud count, flowering dates, and the no. of shoots/bulb. Ten weeks after sowing, hybrids had one to four leaves/plant. At 20 weeks, the leaf number had increased to as many as 40. Despite the lack of a cold treatment, most hybrids initiated flower buds. Visible bud date occurred as early as 20 weeks after sowing. Photoperiod had no effect on leaf number, stem height, and flower bud initiation. Plant height exceeded 15 inches by week 16 in most hybrids, indicating the need for plant growth regulator applications. The next steps in product development for seed-propagated Easter lilies will be outlined.


1994 ◽  
Vol 72 (4) ◽  
pp. 533-538 ◽  
Author(s):  
J. Y. C. Reekie ◽  
P. R. Hicklenton ◽  
E. G. Reekie

This study was undertaken to determine if the effect of elevated CO2 on flowering phenology is a function of the photoperiodic response of the species involved. Four long-day plants, Achillea millefolium, Callistephus chinensis, Campanula isophylla, and Trachelium caeruleum, and four short-day plants, Dendranthema grandiflora, Kalanchoe blossfeldiana, Pharbitis nil, and Xanthium pensylvanicum, were grown under inductive photoperiods (9 h for short day and 17 h for long day) at either 350 or 1000 μL/L CO2. Time of visible flower bud formation, flower opening, and final plant biomass were assessed. Elevated CO2 advanced flower opening in all four long-day species and delayed flowering in all four short-day species. In the long-day species, the effect of CO2 was primarily on bud initiation; all four species formed buds earlier at high CO2. Bud development, the difference in time between flower opening and bud initiation, was advanced in only one long-day species, Callistephus chinensis. Mixed results were obtained for the short-day species. Elevated CO2 exerted no effects on bud initiation but delayed bud development in Dendranthema and Kalanchoe. In Xanthium, bud initiation rather than bud development was delayed. Data on bud initiation and development were not obtained for Pharbitis. The negative effect of CO2 upon phenology in the short-day species was not associated with negative effects on growth. Elevated CO2 increased plant size in both long-day and short-day species. Key words: phenology, bud initiation, flower opening, size at flowering, photoperiodism.


HortScience ◽  
1990 ◽  
Vol 25 (12) ◽  
pp. 1616-1618 ◽  
Author(s):  
Yusef S. Siraj-Ali ◽  
Harry K. Tayama ◽  
Thomas L. Prince ◽  
Stephen A. Carver

The relationship between poinsettia (Euphorbia pulcherrima Willd. ex Kl.) maturity and premature flower bud initiation (splitting) was evaluated. Changes in root growth, phyllotaxy, and heterophylly of `Annette Hegg Dark Red' poinsettia stock plants and cuttings in response to repeated severe pruning (hedging) and the chemical growth regulators gibberellic acid (GA4+7), PBA, or ethephon were evaluated. Cuttings taken from hedged stock plants exhibited a phyllotaxy of 1/3 to 2/5, extensive root growth (characteristics of juvenility in poinsettia), and a low level of splitting (34%). Cuttings taken from nonhedged stock plants exhibited a phyllotaxy of 3/8, reduced root growth (characteristics of maturity in poinsettia), and a high level of splitting 177%). There was a moderate negative correlation (-0.75) between root growth and splitting and a strong positive correlation (0.94) between splitting and phyllotaxy. Cuttings treated with gibberellic acid or PBA exhibited elliptic to ovate leaves (a juvenile characteristic) and levels of splitting ranging from 20% to 90%, depending on concentration and application timing. Untreated cuttings and those treated with ethephon exhibited lobed leaves (an adult characteristic) and levels of splitting ranging from 82% to 100%. Names of the chemical growth regulators were: trihydroxy-1-methyl-8-methylenegibb-3-ene-1,10-dicarboxylic acid 1,-4a-lactone (GA4+7); N-(phenylmethyl)-9-)tetrahydro-2H-pyran-2-yl)-9H-purin-6-amine (PBA); (2-chloroethyl) phosphonic acid (ethephon).


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1167a-1167
Author(s):  
Stephen M. Southwick ◽  
James T. Yeager

Heavy fruit set of apricot (Prunus armeniaca) cultivars grown in California often require hand thinning to insure that adequate fruit size is obtained. Alternatives to costly hand thinning would be welcome. GA treatments made during flower bud initiation/differentiation have been previously shown to inhibit the development of floral and vegetative buds in a number of different tree fruit species. The effects of post-harvest limb and whole tree aqueous gibberellic acid (GA) sprays on flower and fruit production were investigated over a 3 year period in `Patterson' apricot. Limb treatments indicated the potential for utilizing postharvest GA sprays to reduce the number of flowers produced in the following season. Harvest fruit size (June 1989) was increased by a 100 mg·liter-1 GA whole tree spray applied 7 July 1988 when compared to non-thinned and hand thinned trees. Yield per tree was reduced by that GA spray, but not enough to show statistical differences. No abnormal tree growth responses have been observed in GA-sprayed trees to date. These results and those from the 1989 and 1990 growing seasons will be presented in effort to identify a role for whole tree postharvest GA sprays in a chemical thinning program suitable for commercial apricots.


1972 ◽  
Vol 50 (4) ◽  
pp. 901-904 ◽  
Author(s):  
Constance Nozzolillo

Two-week-old buckwheat seedlings growing under a 16-h day were treated with gibberellic acid. Subsequent flower bud initiation was unaffected, but fewer buds were formed. Flowers were morphologically normal except that pistils were much reduced in size. Fruit production was greatly reduced in the treated plants, although height growth and dry weight were slightly increased.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 553b-553
Author(s):  
Esmaeil Fallahi

Early thinning of apples is important because of its impact on fruit size and next season's flower bud initiation. In the past, apple cultivars were often sprayed with the blossom thinner sodium dinitro-ortho-cresol(Elgetol) during full bloom, followed by a post-bloom application of a fruit thinner such as carbaryl with or without naphthalene acetic acid (NAA). Elgetol was removed from the market in 1989 because of the high cost of re-registration. Full-bloom sprays of sulfcarbamide (Wilthin), pelargonic acid (Thinex), and endothalic acid (Endothal), ammonium thiosulfate (ATS) or petal fall spray of carbaryl (Sevin XLR Plus) were developed as replacements for Elgetol. Hydrogen cyanamide (HC) and other chemicals have been used to eliminate or to reduce chilling requirements of peaches grown under the warm desert conditions. HC applied at “pink bloom” stage was observed to reduce the number of open blooms in `Florda Prince' peach; therefore, it was first used for blossom thinning in this cultivar in Arizona. Later, HC was also found to be an effective blossom thinner for plums in Idaho. HC has recently been found to effectively thin apple and peach blossoms. Armothin has also been an effective blossom thinner for peach in California.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 447d-447
Author(s):  
Meriam Karlsson ◽  
Jeffrey Werner

Nine-week-old plants of Cyclamen persicum `Miracle Salmon' were transplanted into 10-cm pots and placed in growth chambers at 8, 12, 16, 20, or 24 °C. The irradiance was 10 mol/day per m2 during a 16-h day length. After 8 weeks, the temperature was changed to 16 °C for all plants. Expanded leaves (1 cm or larger) were counted at weekly intervals for each plant. The rate of leaf unfolding increased with temperature to 20 °C. The fastest rate at 20 °C was 0.34 ± 0.05 leaf/day. Flower buds were visible 55 ± 7 days from start of temperature treatments (118 days from seeding) for the plants grown at 12, 16, or 20 °C. Flower buds appeared 60 ± 6.9 days from initiation of treatments for plants grown at 24 °C and 93 ± 8.9 days for cyclamens grown at 8 °C. Although there was no significant difference in rate of flower bud appearance for cyclamens grown at 12, 16, or 20 °C, the number of leaves, flowers, and flower buds varied significantly among all temperature treatments. Leaf number at flowering increased from 38 ± 4.7 for plants at 12 °C to 77 ± 8.3 at 24 °C. Flowers and flower buds increased from 18 ± 2.9 to 52 ± 11.0 as temperature increased from 12 to 24 °C. Plants grown at 8 °C had on average 6 ± 2 visible flower buds, but no open flowers at termination of the study (128 days from start of treatments).


Sign in / Sign up

Export Citation Format

Share Document