scholarly journals Understanding Carbon Footprint in Production and Use of Landscape Plants

2019 ◽  
Vol 29 (1) ◽  
pp. 6-10 ◽  
Author(s):  
Dewayne L. Ingram ◽  
Charles R. Hall ◽  
Joshua Knight

Understanding carbon footprint (CF) terminology and the science underlying its determination is important to minimizing the negative impacts of new product development and assessing positive or negative cradle-to-grave life-cycle impacts. Life cycle assessment has been used to characterize representative field-grown and container-grown landscape plants. The dominant contributor to the CF and variable costs of field-grown trees is equipment use, or more specifically, the combustion of fossil fuels. Most of that impact is at harvest when heavy equipment is used to dig and move individual trees. Transport of these trees to customers and the subsequent transplant in the landscape are also carbon-intensive activities. Field-grown shrubs are typically dug by hand and have much smaller CFs than trees. Plastics are the major contributor to CF of container-grown plants. Greenhouse heating also can be impactful on the CF of plants depending on the location of the greenhouse or nursery and the length and season(s) of production. Knowing the input products and activities that contribute most toward CF and costs during plant production allows nursery and greenhouse managers to consider protocol modifications that are most impactful on profit potential and environmental impact. Marketers of landscape plants need information about the economic and environmental life-cycle benefits of these products, as they market to environmentally conscious consumers.

Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2916
Author(s):  
Jérôme Payet ◽  
Titouan Greffe

Worldwide electricity consumption increases by 2.6% each year. Greenhouse gas emissions due to electricity production raise by 2.1% per year on average. The development of efficient low-carbon-footprint renewable energy systems is urgently needed. CPVMatch investigates the feasibility of mirror or lens-based High Concentration Photovoltaic (HCPV) systems. Thanks to innovative four junction solar cells, new glass coatings, Position Sensitive Detectors (PSD), and DC/DC converters, it is possible to reach concentration levels higher than 800× and a module efficiency between 36.7% and 41.6%. From a circular economy’s standpoint, the use of concentration technologies lowers the need in active material, increases recyclability, and reduces the risk of material contamination. By using the Life Cycle Assessment method, it is demonstrated that HCPV presents a carbon footprint ranking between 16.4 and 18.4 g CO2-eq/kWh. A comparison with other energy means for 16 impact categories including primary energy demand and particle emissions points out that the environmental footprint of HCPV is typically 50 to 100 times lower than fossil fuels footprint. HCPV’s footprint is also three times lower than that of crystalline photovoltaic solutions and is close to the environmental performance of wind power and hydropower.


2021 ◽  
Author(s):  
Percy Jinga

The current climate change is significantly caused by anthropogenic greenhouse gases, particularly CO2 released by burning of fossil fuels. Climate change is predicted to disrupt production systems and supply chains of businesses, potentially affecting their financial performance. ESG investing, the consideration of environmental, social and governance factors by asset managers will likely play a crucial role in combating climate change. To attract ESG funds, companies will have to reduce their carbon footprint, among other actions. When companies reduce scope emissions, they help achieve a goal of the Paris Agreement of limiting average global temperature increase to below 2°C above pre-industrial level. The aim is to identify factors that are likely to increase uptake of ESG investing. The increase in number of ESG investors and their assets, higher financial performance of ESG-linked investments, and increasing regulatory and investor initiatives are likely to increase the impact of ESG investing in reducing greenhouse gas emissions. In addition, investors are becoming more environmentally conscious when making investment decisions. Although some challenges persist, including inconsistency in terminology, huge amount of data to analyze and heterogenous rating standards, ESG investing is likely to play an important role in influencing entities to reduce their carbon footprint.


2013 ◽  
Vol 67 (1) ◽  
pp. 63-73 ◽  
Author(s):  
C. Remy ◽  
B. Lesjean ◽  
J. Waschnewski

This study exemplifies the use of Life Cycle Assessment (LCA) as a tool to quantify the environmental impacts of processes for wastewater treatment. In a case study, the sludge treatment line of a large wastewater treatment plant (WWTP) is analysed in terms of cumulative energy demand and the emission of greenhouse gases (carbon footprint). Sludge treatment consists of anaerobic digestion, dewatering, drying, and disposal of stabilized sludge in mono- or co-incineration in power plants or cement kilns. All relevant forms of energy demand (electricity, heat, chemicals, fossil fuels, transport) and greenhouse gas emissions (fossil CO2, CH4, N2O) are accounted in the assessment, including the treatment of return liquor from dewatering in the WWTP. Results show that the existing process is positive in energy balance (–162 MJ/PECOD * a) and carbon footprint (–11.6 kg CO2-eq/PECOD * a) by supplying secondary products such as electricity from biogas production or mono-incineration and substituting fossil fuels in co-incineration. However, disposal routes for stabilized sludge differ considerably in their energy and greenhouse gas profiles. In total, LCA proves to be a suitable tool to support future investment decisions with information of environmental relevance on the impact of wastewater treatment, but also urban water systems in general.


2012 ◽  
Vol 3 (4) ◽  
pp. 266-275 ◽  
Author(s):  
Jes Clauson-Kaas ◽  
Birgitte Lilholt Sørensen ◽  
Ole G. Dalgaard ◽  
Anitha K. Sharma ◽  
Niels Bent Johansen ◽  
...  

The most widely used approaches for handling of combined sewer overflows (CSOs) are: (1) storage in smaller retention basins and local decentralised treatment; and (2) storage in larger retention basins and treatment at a central wastewater treatment plant. This paper compares the environmental impact including carbon footprint for these two approaches using the life cycle assessment (LCA) method, and provides a holistic view of how CSO is to be treated considering technical, economic and environmental issues. The analysis is based on the results of the EU-financed LotWater project and 9 years of operational data from wastewater treatment in Copenhagen. All technologies are analysed for handling of 1 m3 of CSO. However, costs are compared based on cost per reduced area. The study showed that decentralised treatment of CSO is the cheapest method and the power consumption for the decentralised treatment is five times less than that for central treatment of CSO. However, central treatment of CSO appeared to be most efficient in reducing discharge of nutrients and environmental toxics. The LCA showed that the largest environmental impacts from handling CSOs are eutrophication and aquatic ecotoxicity. This study concludes that focusing on global warming alone in the form of reduced energy consumption could result in negative impacts on recipient waters.


2020 ◽  
Vol 13 (1) ◽  
pp. 158
Author(s):  
Sishen Wang ◽  
Hao Wang ◽  
Pengyu Xie ◽  
Xiaodan Chen

Low-carbon transport system is desired for sustainable cities. The study aims to compare carbon footprint of two transportation modes in campus transit, bus and bike-share systems, using life-cycle assessment (LCA). A case study was conducted for the four-campus (College Ave, Cook/Douglass, Busch, Livingston) transit system at Rutgers University (New Brunswick, NJ). The life-cycle of two systems were disaggregated into four stages, namely, raw material acquisition and manufacture, transportation, operation and maintenance, and end-of-life. Three uncertain factors—fossil fuel type, number of bikes provided, and bus ridership—were set as variables for sensitivity analysis. Normalization method was used in two impact categories to analyze and compare environmental impacts. The results show that the majority of CO2 emission and energy consumption comes from the raw material stage (extraction and upstream production) of the bike-share system and the operation stage of the campus bus system. The CO2 emission and energy consumption of the current campus bus system are 46 and 13 times of that of the proposed bike-share system, respectively. Three uncertain factors can influence the results: (1) biodiesel can significantly reduce CO2 emission and energy consumption of the current campus bus system; (2) the increased number of bikes increases CO2 emission of the bike-share system; (3) the increase of bus ridership may result in similar impact between two systems. Finally, an alternative hybrid transit system is proposed that uses campus buses to connect four campuses and creates a bike-share system to satisfy travel demands within each campus. The hybrid system reaches the most environmentally friendly state when 70% passenger-miles provided by campus bus and 30% by bike-share system. Further research is needed to consider the uncertainty of biking behavior and travel choice in LCA. Applicable recommendations include increasing ridership of campus buses and building a bike-share in campus to support the current campus bus system. Other strategies such as increasing parking fees and improving biking environment can also be implemented to reduce automobile usage and encourage biking behavior.


Author(s):  
Ahmed I. Osman ◽  
Neha Mehta ◽  
Ahmed M. Elgarahy ◽  
Amer Al-Hinai ◽  
Ala’a H. Al-Muhtaseb ◽  
...  

AbstractThe global energy demand is projected to rise by almost 28% by 2040 compared to current levels. Biomass is a promising energy source for producing either solid or liquid fuels. Biofuels are alternatives to fossil fuels to reduce anthropogenic greenhouse gas emissions. Nonetheless, policy decisions for biofuels should be based on evidence that biofuels are produced in a sustainable manner. To this end, life cycle assessment (LCA) provides information on environmental impacts associated with biofuel production chains. Here, we review advances in biomass conversion to biofuels and their environmental impact by life cycle assessment. Processes are gasification, combustion, pyrolysis, enzymatic hydrolysis routes and fermentation. Thermochemical processes are classified into low temperature, below 300 °C, and high temperature, higher than 300 °C, i.e. gasification, combustion and pyrolysis. Pyrolysis is promising because it operates at a relatively lower temperature of up to 500 °C, compared to gasification, which operates at 800–1300 °C. We focus on 1) the drawbacks and advantages of the thermochemical and biochemical conversion routes of biomass into various fuels and the possibility of integrating these routes for better process efficiency; 2) methodological approaches and key findings from 40 LCA studies on biomass to biofuel conversion pathways published from 2019 to 2021; and 3) bibliometric trends and knowledge gaps in biomass conversion into biofuels using thermochemical and biochemical routes. The integration of hydrothermal and biochemical routes is promising for the circular economy.


2021 ◽  
Vol 13 (9) ◽  
pp. 4948
Author(s):  
Núria Boix Rodríguez ◽  
Giovanni Formentini ◽  
Claudio Favi ◽  
Marco Marconi

Face masks are currently considered key equipment to protect people against the COVID-19 pandemic. The demand for such devices is considerable, as is the amount of plastic waste generated after their use (approximately 1.6 million tons/day since the outbreak). Even if the sanitary emergency must have the maximum priority, environmental concerns require investigation to find possible mitigation solutions. The aim of this work is to develop an eco-design actions guide that supports the design of dedicated masks, in a manner to reduce the negative impacts of these devices on the environment during the pandemic period. Toward this aim, an environmental assessment based on life cycle assessment and circularity assessment (material circularity indicator) of different types of masks have been carried out on (i) a 3D-printed mask with changeable filters, (ii) a surgical mask, (iii) an FFP2 mask with valve, (iv) an FFP2 mask without valve, and (v) a washable mask. Results highlight how reusable masks (i.e., 3D-printed masks and washable masks) are the most sustainable from a life cycle perspective, drastically reducing the environmental impacts in all categories. The outcomes of the analysis provide a framework to derive a set of eco-design guidelines which have been used to design a new device that couples protection requirements against the virus and environmental sustainability.


2021 ◽  
Vol 13 (4) ◽  
pp. 1795
Author(s):  
Pedro Dorta Antequera ◽  
Jaime Díaz Pacheco ◽  
Abel López Díez ◽  
Celia Bethencourt Herrera

Many small islands base their economy on tourism. This activity, based to a large extent on the movement of millions of people by air transport, depends on the use of fossil fuels and, therefore, generates a large amount of greenhouse gas (GHG) emissions. In this work, these emissions are evaluated by means of various carbon calculators, taking the Canary Islands as an example, which is one of the most highly developed tourist archipelagos in the world. The result is that more than 6.4 million tonnes (Mt) of CO2 are produced per year exclusively due to the massive transport of tourists over an average distance of more than 3000 km. The relative weight of these emissions is of such magnitude that they are equivalent to more than 50% of the total amount produced by the socioeconomic activity of the archipelago. Although, individually, it is travelers from Russia and Nordic countries who generate the highest carbon footprint due to their greater traveling distance, the British and German tourists account for the greatest weight in the total, with two-thirds of emissions.


Sign in / Sign up

Export Citation Format

Share Document