scholarly journals Genetic and Morphological Analysis of the Origin and Identity of Perennial Lavatera (Malvaceae) Cultivars

2001 ◽  
Vol 126 (5) ◽  
pp. 593-598
Author(s):  
Mike L. Grant ◽  
Diana M. Miller ◽  
Alastair Culham

Knowledge of the origin of Lavatera L. (tree mallows) cultivars helps to predict their cultural requirements. Eighteen accessions representing 15 cultivars, 14 accessions of 7 species, and 5 accessions of an F1 hybrid between the putative parents of the cultivars were sampled for morphological variation and for randomly amplified polymorphic DNA (RAPD) fingerprint variation. Species-specific molecular markers were identified from the RAPD profiles. Chimeral elements were not distinguishable by RAPD analysis. Principal component analysis identified the majority of the cultivars to be selections of hybrid origin, probably from a narrow genetic base. Two cultivars were derived directly from individual species. The resolving power of RAPD markers and morphology was similar although RAPD data offered greater ability to ascribe parentage while morphology offered optimal discrimination of cultivar selections.

2002 ◽  
Vol 127 (2) ◽  
pp. 262-270 ◽  
Author(s):  
Yuanwen Teng ◽  
Kenji Tanabe ◽  
Fumio Tamura ◽  
Akihiro Itai

A total of 118 Pyrus sp. (pear) and cultivars native mainly to east Asia were subjected to randomly amplified polymorphic DNA (RAPD) analysis to evaluate genetic variation and relationships among the accessions. Two hundred fifty RAPD markers were scored from 20 decamer primers. RAPD markers specific to species were identified. Clustering analysis revealed two divisions: one comprising cultivars of P. communis L., and the other including all accessions of Pyrus native to east Asia. The grouping of the species and cultivars by RAPD data largely agrees with morphological pear taxonomy. However, some noted incongruence existed between two classification methods. Pyrus calleryana Dcne. clustered together with P. koehnei Schneid., P. fauriei Schneid. and P. dimorphophylla Makino. Pyrus betulaefolia Bge. clustered with P. ×hopeiensis Yu and P. ×phaeocarpa Rehd. A noncultivated clone of P. aromatica Kikuchi et Nakai grouped with P. aromatica cultivars. Pyrus hondoensis Nakai et Kikuchi and cultivars of P. ussuriensis Max. formed a single group. Some accessions from Korea (named Korean pear) had species-specific RAPD markers and comprised an independent group. Most of the Chinese white pears clustered together with most of the Chinese sand pears. Based on the present results, the new nomenclature P. pyrifolia var. sinensis (Lindley) Teng et Tanabe for Chinese white pear was suggested. Most accessions of Japanese pears fell into one main group, whereas pear cultivars from Kochi Prefecture of Japan subclustered with some Chinese sand pears and one accession from Korea. Our results infer that some local Japanese pear cultivar populations may have been derived from cultivars native to Kochi Prefecture in Shikoku region, and that the latter may have been introduced from ancient China and/or Korea.


1995 ◽  
Vol 13 (1) ◽  
pp. 43-46 ◽  
Author(s):  
M. Javed Iqbal ◽  
D. W. Paden ◽  
A. Lane Rayburn

Abstract Amplification profiles produced by polymerase chain reaction (PCR) using randomly amplified polymorphic DNA sequences (RAPD) have the potential for species and cultivar identification. Since most rhododendron plants are vegetatively propagated, it is imperative that RAPD profiles be stable during this propagation. Three species of rhododendron, Rhododendron arborescens, R. atlanticum and R. yedoense var. poukhanense were used to produce species specific amplification profiles. Stability of amplification profiles among individually cloned plants of each species were studied. Ten plants of R. atlanticum, 9 of R. arborescens, and 10 of R. yedoense var. poukhanense were studied with 10 random primers. No polymorphism was observed among individual plants of R. atlanticum and R. arborescens with all the primers. The amplification product of one plant of R. yedoense var. poukhanense showed a difference of one band with one primer. The rest of the profiles with 9 primers were identical in all plants of this species. In order to ascertain that RAPD markers can indeed reveal real genetic differences among plants, F2 plants of two hybrids were analyzed. In contrast to the clonally propagated plants, extensive polymorphisms were observed among the individual F2 plants. Thus, RAPD analysis can be used to detect genetic variability. This stability of RAPD profiles in clonally propagated rhododendron indicates the usefulness of these markers in plant identification.


2018 ◽  
Vol 11 (2) ◽  
pp. 132-153 ◽  
Author(s):  
Lucia E. Biddle ◽  
Robyn E. Broughton ◽  
Adrian M. Goodman ◽  
D. Charles Deeming

Bird nests represent an extended phenotype of individuals expressed during reproduction and so exhibit variability in composition, structure and function. Descriptions of nests based on qualitative observations suggest that there is interspecific variation in size and composition but there are very few species in which this has been confirmed. For these species, data of the amounts of different materials indicate that nest construction behaviour is plastic and affected by a variety of factors, such as prevailing temperature, geographic location, and availability of materials. The lack of data on nest composition is hampering our understanding of how nests achieve their various functions and how different species solve the problem of building a nest that will accommodate incubation and allow successful hatching of eggs. This study deconstructed nests of four species of the Turdidae, four species of the Muscicapidae, and six species of the Fringillidae and quantified the size of the nests and their composition. These data were used to test: (1) whether nest size correlated with adult bird mass; (2) whether it was possible to distinguish between species on the basis of their nest composition; and (3) whether, within a species, it was possible to distinguish between the cup lining and the rest of the nest based on composition. Most but not all nest dimensions correlated with bird mass. Principal component analysis revealed species differences based on nest composition and discriminant analysis could distinguish cup lining from the outer nest based on material composition. Intraspecific variation in composition varied among species and in general fewer types of material were found in the cup lining than the outer nest. These data provide insight into how nests are constructed by the different species and in conjunction with studies of the mechanical, thermal and hydrological properties of a nest, will begin to reveal how and why individual species select particular combinations of materials to build a nest.


ISRN Agronomy ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Ferdaous Guasmi ◽  
Walid Elfalleh ◽  
Hédia Hannachi ◽  
Khadija Fères ◽  
Leila Touil ◽  
...  

Random amplified polymorphic DNA (RAPD) and intersimple sequence repeat (ISSR) were assayed to determine the genetic diversity of 80 barley specimens from South Tunisia. The ISSR primers showed variation in the percentage of polymorphism, band informativeness (Ib), and resolving power (Rp). The percentage of polymorphism is 66.67%, the average Ib ranged from 0.24 to 0.39, while Rp ranged from 0.74 to 1.16. In RAPD analysis, three primers yielded a total of 17 scorable bands, which are all polymorphic. The three polymorphic primers exhibited variation with regard to average band informativeness (AvIb) and resolving power (Rp). RAPD and ISSR marker systems were found to be useful for the genetic diversity among the barley specimens. The two dendrograms obtained through these markers show different clustering of 80 barely specimens, but we noted that some clusters were similar in some cases. A poor correlation () was found between both sets of genetic similarity data, suggesting that both sets of markers revealed unrelated estimates of genetic relationships. Therefore, the ISSR and RAPD molecular markers show two genetic grouping of studied barely specimens.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Arangasamy Yazhini ◽  
Narayanaswamy Srinivasan ◽  
Sankaran Sandhya

AbstractAfrotheria is a clade of African-origin species with striking dissimilarities in appearance and habitat. In this study, we compared whole proteome sequences of six Afrotherian species to obtain a broad viewpoint of their underlying molecular make-up, to recognize potentially unique proteomic signatures. We find that 62% of the proteomes studied here, predominantly involved in metabolism, are orthologous, while the number of homologous proteins between individual species is as high as 99.5%. Further, we find that among Afrotheria, L. africana has several orphan proteins with 112 proteins showing < 30% sequence identity with their homologues. Rigorous sequence searches and complementary approaches were employed to annotate 156 uncharacterized protein sequences and 28 species-specific proteins. For 122 proteins we predicted potential functional roles, 43 of which we associated with protein- and nucleic-acid binding roles. Further, we analysed domain content and variations in their combinations within Afrotheria and identified 141 unique functional domain architectures, highlighting proteins with potential for specialized functions. Finally, we discuss the potential relevance of highly represented protein families such as MAGE-B2, olfactory receptor and ribosomal proteins in L. africana and E. edwardii, respectively. Taken together, our study reports the first comparative study of the Afrotherian proteomes and highlights salient molecular features.


2011 ◽  
Vol 343-344 ◽  
pp. 981-987
Author(s):  
Feng Juan Li ◽  
Chang Lu Wang ◽  
Dong He ◽  
Ya Qiong Liu ◽  
Mian Hua Chen ◽  
...  

RAPD markers are used to study the genetic diversity of the main planting on 37 castor varieties widely cultivated in china according to the oil content and other characteristic of different castor varieties. Genetic distance of 37 Chinese castor varieties is studied by RAPD markers analysis. RAPD analysis shows that a total of 122 bands are amplified from random primers of 20 S series, including 71 polymorphic bands with polymorphic rate of 58.20%. 37 castor beans are divided into four major groups in the phylogenetic tree. One castor germplasm is included in1, 2, 3 groups respectively, and two sub-groups are included in the 4 major group.


Genome ◽  
1995 ◽  
Vol 38 (2) ◽  
pp. 201-210 ◽  
Author(s):  
F. N. Wachira ◽  
R. Waugh ◽  
W. Powell ◽  
C. A. Hackett

Camellia sinensis is a beverage tree crop native to Southeast Asia and introductions have been made into several nonindigenous countries. No systematic assessment of genetic variability in tea has been done anywhere. In this study, random amplified polymorphic DNA (RAPD) analysis was used to estimate genetic diversity and taxonomic relationships in 38 clones belonging to the three tea varieties, assamica, sinensis, and assamica ssp. lasiocalyx. Extensive genetic variability was detected between species, which was partitioned into between and within population components. Seventy percent of the variation was detected within populations. Analyses based on band sharing separated the three populations in a manner consistent with both the present taxonomy of tea and with the known pedigrees of some clones. RAPD analysis also discriminated all of the 38 commercial clones, even those which cannot be distinguished on the basis of morphological and phenotypic traits.Key words: genetic diversity, RAPDs, Camellia sinensis.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 913
Author(s):  
Serajis Salekin ◽  
Cristian Higuera Catalán ◽  
Daniel Boczniewicz ◽  
Darius Phiri ◽  
Justin Morgenroth ◽  
...  

Taper functions are important tools for forest description, modelling, assessment, and management. A large number of studies have been conducted to develop and improve taper functions; however, few review studies have been dedicated to addressing their development and parameters. This review summarises the development of taper functions by considering their parameterisation, geographic and species-specific limitations, and applications. This study showed that there has been an increase in the number of studies of taper function and contemporary methods have been developed for the establishment of these functions. The reviewed studies also show that taper functions have been developed from simple equations in the early 1900s to complex functions in modern times. Early taper functions included polynomial, sigmoid, principal component analysis (PCA), and linear mixed functions, while contemporary machine learning (ML) approaches include artificial neural network (ANN) and random forest (RF). Further analysis of the published literature also shows that most of the studies of taper functions have been carried out in Europe and the Americas, meaning most taper equations are not specifically applicable to tropical tree species. Developing well-conditioned taper functions requires reducing the variation due to species, measurement techniques, and climatic conditions, among other factors. The information presented in this study is important for understanding and developing taper functions. Future studies can focus on developing better taper functions by incorporating emerging remote sensing and geospatial datasets, and using contemporary statistical approaches such as ANN and RF.


2021 ◽  
Vol 16 (1) ◽  
pp. 13-20
Author(s):  
Popoola Omoniyi Michael ◽  
Olagunju Oluwatosin Olubunmi

AbstractIntraspecific morphological variation in Clarias gariepinus was studied in three water bodies. Twenty-three morphometric characteristics and seven meristic were used. Principal component (PC) analysis showed that morphometric traits of River Osun and Ogbese were somewhat related while that of Aago showed no relatedness, there were no difference among the meristic counts of the populations. PC1, and PC2 accounted for 93% and 4% of the variation observed in the populations. High positive correlation was observed in Aago (r = 0.872, b = 2.10) and Ogbese population while low correlation and negative allometric growth (r = 0.425 and b= 1.38) was observed in Asejire population. Cluster analysis revealed that three studied populations are separated into two major clusters, with samples from Asejire and Ogbese population found within the same cluster but different sub- clusters, similarly some of samples from Aago were also within the same cluster while samples 10 were found on a separate and major cluster. The study confirms the variability among individual species within each population, indicates the presence of genetic diversity among the populations of C. gariepinus and the Pre-anal distance and dorsal fin ray count could be employed in the identification of populations of catfish. Key words: morphometric traits, meristic characters, populations, allometric


2016 ◽  
Vol 371 (1694) ◽  
pp. 20150269 ◽  
Author(s):  
Santiago Soliveres ◽  
Peter Manning ◽  
Daniel Prati ◽  
Martin M. Gossner ◽  
Fabian Alt ◽  
...  

Species diversity promotes the delivery of multiple ecosystem functions (multifunctionality). However, the relative functional importance of rare and common species in driving the biodiversity–multifunctionality relationship remains unknown. We studied the relationship between the diversity of rare and common species (according to their local abundances and across nine different trophic groups), and multifunctionality indices derived from 14 ecosystem functions on 150 grasslands across a land-use intensity (LUI) gradient. The diversity of above- and below-ground rare species had opposite effects, with rare above-ground species being associated with high levels of multifunctionality, probably because their effects on different functions did not trade off against each other. Conversely, common species were only related to average, not high, levels of multifunctionality, and their functional effects declined with LUI. Apart from the community-level effects of diversity, we found significant positive associations between the abundance of individual species and multifunctionality in 6% of the species tested. Species-specific functional effects were best predicted by their response to LUI: species that declined in abundance with land use intensification were those associated with higher levels of multifunctionality. Our results highlight the importance of rare species for ecosystem multifunctionality and help guiding future conservation priorities.


Sign in / Sign up

Export Citation Format

Share Document