scholarly journals Leaf Trimming and High Temperature Regulation of Phytohormones and Polyamines in Creeping Bentgrass Leaves

2016 ◽  
Vol 141 (1) ◽  
pp. 66-75 ◽  
Author(s):  
Sanalkumar Krishnan ◽  
Yingmei Ma ◽  
Emily Merewitz

Mowing frequencies are associated with differences in disease susceptibility of turfgrasses, but how hormones respond to mowing practices are not fully understood. Two independent growth chamber experiments were conducted to determine how leaf trimming and heat stress play a role in modulating endogenous hormones within creeping bentgrass (Agrostis stolonifera) leaf tissues. The study also aimed to evaluate whether there are hormone changes at 0, 15, and 30 minutes after leaf trimming (wounding). The effects of trimming and temperature on sod plugs of creeping bentgrass ‘Penncross’ and ‘Penn-G2’ were investigated under optimal conditions (23/20 °C day/night) and heat stress (30/25 °C day/night). Plants were 1) untrimmed and sampled by plucking at the leaf base, 2) untrimmed and sampled by cutting at 0, 15, and 30 minutes, or 3) trimmed once every 3 days. Salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA), and indole-3-acetic acid (IAA) were generally greater in untrimmed plants compared with plants trimmed every 3 days under high temperature conditions. Zeatin riboside (ZR) was lower in untrimmed plants compared with plants trimmed every 3 days. JA and gibberellic acid (GA) accumulated to greater levels in the plants after 15 and 30 minutes of sampling. Polyamines (PAs) exhibited a transient increase in putrescine (Put) due to wounding. The results demonstrate the importance of research practices that consider the timing of sampling turfgrass plants for hormone analysis, help elucidate why mowing practices may play a role in stress susceptibility, and may be applicable to various studies related to leaf wounding.

2007 ◽  
Vol 132 (2) ◽  
pp. 185-192 ◽  
Author(s):  
Yan Xu ◽  
Bingru Huang

Leaf senescence can be induced by many environmental stresses, including supraoptimal temperatures. The objectives of this study were to evaluate leaf senescence induced by heat stress for two Agrostis species contrasting in heat tolerance and to examine whether heat-induced leaf senescence in both species was associated with changes in three major senescence-related hormones: ethylene, abscisic acid (ABA), and cytokinins. Plants of heat-tolerant rough bentgrass (Agrostis scabra Willd.) and heat-sensitive creeping bentgrass (Agrostis stolonifera L.) were exposed to 35/30 °C (day/night) (high temperature) or 20/15 °C (control) for 35 d in growth chambers. Turf quality, photochemical efficiency (Fv/Fm), and the contents of two pigments (chlorophyll and carotenoid) for both species decreased under high temperature; however, heat-tolerant A. scabra exhibited delayed and less severe decline in all parameters compared with heat-sensitive A. stolonifera. Ethylene production rate increased in both species at 35 °C, but the increase was observed 21 days later in A. scabra compared with that in A. stolonifera. ABA content increased at the initiation of heat stress and then declined in both species after prolonged heat stress. However, the timing of the increase was delayed for 7 days and the highest level of ABA content was less in A. scabra (4.0 times that of the control) than that in A. stolonifera (5.9 times that of the control). Decreases in both forms of cytokinins (transzeatin/zeatin riboside and isopentenyl adenosine) were also delayed for 14 days and less pronounced in A. scabra. Correlation analysis revealed that leaf senescence induced by heat stress was negatively correlated to ethylene and ABA accumulation and positively correlated to cytokinin production. Delayed leaf senescence in A. scabra under heat stress could be related to slower and less magnitude of changes in ethylene, ABA, and cytokinins.


2006 ◽  
Vol 18 (3) ◽  
pp. 359-365 ◽  
Author(s):  
Rogério M. Suzuki ◽  
Gilberto B. Kerbauy

This study attempted to clarify the effects of dark, light and ethylene on plant growth and endogenous levels of indole-3-acetic acid (IAA), cytokinins and abscisic acid in Catasetum fimbriatum. Dark-incubation fully inhibited root and pseudobulb formation as well as leaf growth, but favored shoot elongation. The results of continuous and active growth in dark-incubated shoots (stolons) were induced by strong apical meristem sink activity and by the significantly increased levels of cytokinins in shoots. In fact, shoot length, cytokinin and IAA levels in dark-incubated shoots were about twice as great as for those grown under light conditions. Moreover, the total cytokinin level in shoots of C. fimbriatum under light conditions without ethylene was significantly higher than that found in roots. High levels of cytokinins in dark-grown stolons may be closely related to the absence of roots in C. fimbriatum. Under light conditions, the increased IAA level in shoots is mediated by ethylene. However, ethylene caused a significant increase of cytokinins in roots of light-treated plants, which may be involved in the retardation of root growth. Since the difference of cytokinins in shoots between ethylene-treated and non-treated plants under light conditions is small, it is concluded that the marked inhibition of leaf growth in ethylene-treated plants can be attributed to ethylene. Zeatin and zeatin riboside are the major cytokinins in C. fimbriatum regardless of the light conditions, ethylene treatment or organ types.


Author(s):  
R. Sunil ◽  
A.K. Chhabra ◽  
Rajesh Kumar Yadav ◽  
Sunil Kumar

Background: Heat stress is a major restrain in chickpea (Cicer arietinum L.) productivity. Developing tolerant chickpea genotypes contributes breeding materials for hybridization programme. Stress indices related to abiotic stresses are found effective in screening of genotypes for high temperature tolerance in chickpea. Methods: An experiment with 24 genotypes under two different environments i.e., timely and late sown conditions was planned to identify the chickpea genotypes tolerant to heat stress, using thirteen stress indices. Stress Susceptibility Index (SSI) is the cardinal index to group genotypes based on their tolerance level. Stress indices Mean Productivity (MP), Geometric Mean Productivity (GMP), Harmonic Mean (HM) Index, Heat Resistant Index (HRI) and Modified Heat Tolerance Index (MHTI) are very effective in identifying stress tolerant genotypes. Result: The result indicated that genotypes H 04-75, H 08-75, H 12-26, H 09-96, ICCV 92944, DCP 92-3 and GNG 2226 are tolerant to heat stress. The identified genotypes can be used as parents in hybridization programme for breeding chickpea cultivars tolerant to high temperature environments.


HortScience ◽  
2022 ◽  
Vol 57 (1) ◽  
pp. 40-47
Author(s):  
Wei Hai Yang ◽  
Chao Zhong Lu ◽  
Wei Chen ◽  
Huan Yu Xu

Fruit abscission occurring severely in the early fruit development affects macadamia yield. Developing effective methods to improve fruit retention is a priority for macadamia cultivation and production. Girdling is an important horticultural practice that has been widely used to increase fruit yield. Previous studies have shown that girdling fails to increase macadamia yield despite enhancing the early fruit set, but few have examined the effect of girdling on its related physiological mechanism. The objective of this study was to investigate the effects of main-branch girdling (MBG) on early fruit retention and also on the levels of carbohydrates and endogenous hormones in the leaves, bearing shoots and fruit of macadamia. Herein, MBG was performed at fruit set using a single-blade knife on 9-year-old macadamia trees (Macadamia integrifolia). Results showed that MBG significantly reduced young fruit drop, concurrent with significant increases in the contents of starch in both the leaves and the bearing shoots and in glucose, fructose, and sucrose levels in the husk and seed. It was suggested that the availability of carbohydrate for fruit retention was improved by MBG. Additionally, MBG increased indole-3-acetic acid (IAA), gibberellin (GA3), and zeatin-riboside (ZR, a type of cytokinin) concentrations and decreased abscisic acid (ABA) contents in the husk and the seed, indicating that MBG reduced the early fruit drop by modifying the balance of endogenous hormones. Therefore, a positive interplay between carbohydrates and endogenous hormones induced by MBG was involved in the reduction of early fruit abscission in macadamia.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhou Li ◽  
Mingyan Tang ◽  
Muhammad Jawad Hassan ◽  
Yan Zhang ◽  
Liebao Han ◽  
...  

High temperature limits the cultivation and utilization of cool-season plants in many regions worldwide. Recently, extreme hot waves swept across the globe in summer, leading to enormous economic loss. The evaluation and identification of genotypic variation in thermotolerance within species are critical to breeding for environmental adaptation and also provide potential materials to explore thermo-resistant mechanism in plants. Forty-two accessions of creeping bentgrass (Agrostis stolonifera), which is a cool-season perennial grass for turf and ecological remediation, were collected from 15 different countries. Physiological traits, namely, chlorophyll (Chl) content, electrolyte leakage, photochemical efficiency, performance index on absorption basis, leaf relative water content, and osmotic potential were used to evaluate the heat tolerance of these materials in controlled growth chambers and field during summer. Stay-green and early-aging genotypes were selected to further reveal the potential mechanism of tolerance to senescence and heat damage associated with alterations in Chl metabolism, antioxidant and photosynthetic capacity, and endogenous γ-aminobutyric acid (GABA). Findings showed that there were significant genetic variations in physiological traits among 41 materials in response to high temperature stress. The 13M, PROVIDENCE, and LOFTS L-93 were the top three accessions with superior tolerance to heat and summer stress than other materials in terms of laboratory and field tests. In response to heat stress, the stay-green genotype PROVIDENCE exhibited significantly higher photochemical efficiency, net photosynthetic rate, transpiration rate, and water use efficiency than the heat-susceptible W6 6570. Delayed leaf senescence in relation to less Chl loss was detected in the PROVIDENCE associated with maintenance of significantly higher expression levels of Chl-anabolic genes (AsCHLH, AsPBGD, and AsPOR) and lower Chl-catabolic gene AsPPH under heat stress. Genetic attributes, such as better capacity to scavenge reactive oxygen species and higher endogenous GABA content could play positive roles in alleviating heat-induced senescence, oxidative damage, and metabolic disturbance in the PROVIDENCE.


Biologia ◽  
2008 ◽  
Vol 63 (4) ◽  
Author(s):  
Mustafa Yildiz ◽  
Hakan Terzi

AbstractThe effect of heat stress on soluble proteins extracted from leaf tissues of bread (Triticum aestivum cv. Gönen-98, tolerant; cv. Cumhuriyet-75, susceptible; genome ABD) and durum (Triticum durum cv. Ege-88, tolerant; cv. Ankara-98, susceptible; genome AB) wheat cultivars differing in sensitivity to high temperature was examined by two-dimensional gel electrophoresis. At acclimation (37°C) and acclimation→high temperature (37°C→50°C) treatments compared to control (25°C), evaluation of gels revealed 31 proteins to be differentially expressed in first leaves as a result of heat stress in heat-susceptible and heat-tolerant cultivars of bread and durum wheats. All of the increased or decreased proteins in amount, newly synthesized and/or disappeared were in low-molecular-weight (LMW, 16.1–24.0 kDa) and generally acidic character (pI 4.8–6.9). The responses of the four cultivars were compared: Twenty-two of 31 proteins were detected as newly synthesized LMW heat shock proteins (LMW HSPs = small HSPs). The number of these sHSPs was different in cultivars which have the same genome. In addition, the number of the sHSPs in heat-tolerant cultivars was higher than in heat-susceptible cultivars. Some of the sHSPs were specific to cultivar. Most of the sHSPs synthesized at 37°C were also detected at 37°C→50°C treatment. It is suggested that sHSPs have special importance in two points: Firstly, sHSPs in cultivars showed abundance and diversity. Secondly, these proteins may play an important role in the acquiring of thermal tolerance.


2007 ◽  
Vol 132 (4) ◽  
pp. 467-472 ◽  
Author(s):  
Mahalaxmi Veerasamy ◽  
Yali He ◽  
Bingru Huang

Heat stress induces leaf senescence and causes changes in protein metabolism. The objective of this study was to investigate effects of exogenous application of a synthetic form of cytokinin, zeatin riboside (ZR), on protein metabolism associated with leaf senescence under heat stress for a cool-season grass species. Creeping bentgrass (Agrostis stolonifera L.) (cv. Penncross) plants were exposed to optimum temperature control (20/15 °C, day/night) and heat stress (35/30 °C) in growth chambers. Before heat stress treatments, foliage was sprayed with 10 μmol ZR or water (untreated) for 3 days and then once per week during 35 days of heat stress. Leaf chlorophyll content, photochemical efficiency (Fv/Fm), and soluble protein content declined, whereas protease activity increased during heat stress. Treatments with ZR helped maintain higher leaf chlorophyll content, Fv/Fm, and soluble protein content under heat stress. Protease activity in ZR-treated plants was lower than that of untreated plants. Zeatin riboside-treated plants had less severe degradation of ribulose-1,5-bisphosphate carboxylase proteins than untreated plants exposed to heat stress. In addition, ZR treatment upregulated the expression of 32- and 57-kDa proteins under heat stress conditions. These results demonstrated that the exogenous application of ZR ameliorated the negative effects of heat stress, as manifested by suppression or delay of leaf senescence. Cytokinins may have helped to alleviate heat stress injury, probably by slowing down the action of protease and by induction or upregulation of heat-shock proteins.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0241806
Author(s):  
Zhan Shen ◽  
Yan-hua Zhang ◽  
Lei Zhang ◽  
Yuan Li ◽  
Ya-dong Sun ◽  
...  

In this study, we investigated the changes in the distribution and regulation of endogenous hormones in Phyllostachys edulis ‘Pachyloen’ during bamboo shooting. Enzyme-linked immunosorbent assay was used to measure the mass fractions of indole-3-acetic acid (IAA), gibberellic acid (GA), zeatin riboside (ZR), and abscisic acid (ABA) in rhizomes, shoots, and maternal bamboo organs during shoot sprouting, shoot growth, and new-bamboo formation. Measurements were compared among bamboo parts and developmental periods. The overall mass fractions of IAA and ABA were significantly higher than those of ZR and GA, driven by differences among bamboo parts and developmental periods. The abundance of each endogenous hormone varied among bamboo parts and developmental periods. During bamboo shooting, ABA had the highest mass fraction in all bamboo parts sampled, followed by IAA, GA, and ZR. Among bamboo parts, rhizomes had more IAA, ZR, and GA than the other parts, but significantly less ABA. Winter shoots had higher ZR: IAA and GA: IAA ratios than rhizomes and maternal bamboo organs. During shoot growth, ABA was the most abundant hormone in rhizomes and maternal bamboo organs, followed by IAA, ZR, and GA. In contrast, IAA was the most abundant hormone in spring shoots, followed by ABA, ZR, and GA. Maternal bamboo organs had a significantly higher ZR: GA ratio, and significantly lower IAA: ABA, ZR: ABA, and GA: ABA ratios than rhizomes. Spring shoots had significantly higher IAA: ABA, ZR: ABA, and GA: ABA ratios than rhizomes and maternal bamboo organs; significantly higher ZR mass fractions, and ZR: GA and ZR: IAA ratios and significantly lower ABA mass fractions than rhizomes; and significantly higher GA: IAA ratio than maternal bamboo organs. During new-bamboo formation, ABA was the most abundant hormone in rhizomes, winter shoots, and maternal bamboo organs, followed by IAA, ZR, and GA. Maternal bamboo organs had significantly lower IAA mass fractions and significantly higher ABA mass fractions than rhizomes and new bamboo tissue. IAA and ABA abundances exhibited an inverse relationship in rhizomes and maternal bamboo organs. GA: ABA and GA: IAA ratios decreased gradually and other hormone ratios exhibited parabolic trends over the bamboo-shooting period, with the highest ratios observed in new bamboo tissues. Overall, the coordination or antagonism among endogenous hormones plays a key regulatory role in bamboo shoot growth. The formation of thick walls in P. edulis ‘Pachyloen’, one of its major traits, may be partially attributed to the relatively high IAA and ZR and low GA mass fractions.


2019 ◽  
Vol 32 (1) ◽  
pp. 143-151 ◽  
Author(s):  
Luma Rayane de Lima Nunes ◽  
Paloma Rayane Pinheiro ◽  
Charles Lobo Pinheiro ◽  
Kelly Andressa Peres Lima ◽  
Alek Sandro Dutra

ABSTRACT Salinity is prejudicial to plant development, causing different types of damage to species, or even between genotypes of the same species, with the effects being aggravated when combined with other types of stress, such as heat stress. The aim of this study was to evaluate the tolerance of cowpea genotypes (Vigna unguiculata L. Walp.) to salt stress at different temperatures. Seeds of the Pujante, Epace 10 and Marataoã genotypes were placed on paper rolls (Germitest®) moistened with different salt concentrations of 0.0 (control), 1.5, 3.0, 4.5 and 6.0 dS m-1, and placed in a germination chamber (BOD) at temperatures of 20, 25, 30 and 35°C. The experiment was conducted in a completely randomised design, in a 3 × 4 × 5 scheme of subdivided plots, with four replications per treatment. The variables under analysis were germination percentage, first germination count, shoot and root length, and total seedling dry weight. At temperatures of 30 and 35°C, increases in the salt concentration were more damaging to germination in the Epace 10 and Pujante genotypes, while for the Marataoã genotype, damage occurred at the temperature of 20°C. At 25°C, germination and vigour in the genotypes were higher, with the Pujante genotype proving to be more tolerant to salt stress, whereas Epace 10 and Marataoã were more tolerant to high temperatures. Germination in the cowpea genotypes was more sensitive to salt stress when subjected to heat stress caused by the low temperature of 20°C or high temperature of 35°C.


Sign in / Sign up

Export Citation Format

Share Document