scholarly journals Green Synthesis of Iron Oxide Nanoparticle Using Coffee Seed Extract and Its Antibacterial Activity

2021 ◽  
Vol 17 (2) ◽  
pp. 19-29
Author(s):  
Yi Peng Teoh ◽  
◽  
Zhong Xian Ooi ◽  
Sim Siong Leong ◽  
Pao Tyon Ng ◽  
...  

The discovery of reliable and green processes for metal oxide nanoparticles synthesis is particularly crucial and exhibits huge potential in various applications. Thus, in this paper, a fast, single step and environmental-friendly method to synthesize iron oxide nanoparticles (Fe2O3-NPs) by bio-reduction of iron salts Fe2+ and Fe3+ under the presence of coffee seeds (CS) aqueous extract was demonstrated. The characteristics of the synthesised Fe2O3-NPs were investigated by using X-ray diffraction (XRD) and ultraviolet-visible (UV-Vis) spectrophotometry techniques. The XRD result revealed that the Fe2O3-NPs produced display highly crystalline property with a cubic structure and the average size of the resulted particle is ranging from 23.2 nm to 37.5 nm. Additionally, the energy band gap (Eg) calculated also showed that maghemite (γ-Fe2O3) nanoparticles was successfully synthesised by using CS extract. The resulted nanoparticles are highly feasible in the inhibition of the growth of pathogenic microorganism.

2019 ◽  
Vol 31 (8) ◽  
pp. 1719-1723
Author(s):  
Nguyen Thi Thanh Thuy ◽  
Le Duc Anh ◽  
Nguyen Huu Tri ◽  
Cu Van Hoang ◽  
Nguyen Anh Nhut

The PEG-coated iron oxide nanoparticles (Fe3O4 NPs-PEG) was synthesized by coprecipitation and ultrasonication method. X-ray diffraction results exhibited that the average size of Fe3O4 NPs-PEG was 19.10 nm, which was further confirmed in TEM imaging. In addition, sonication time and curcumin concentration were studied to evaluate the efficiency of loading curcumin onto Fe3O4 NPs-PEG. Further, statistical optimization using response surface methodology (RSM) has shown curcumin concentration (0,01% w/v) and sonication time (21 min) for maximal curcumin loading (0.37 mg/g). Along with the magnetization studies, the immobilization of curcumin onto the Fe3O4 NPs-PEG was characterized by UV, FTIR and SEM. The results showed that the curcumin loaded PEG coated iron oxide nanoparticles could potentially be used for magnetically target drug delivery.


2021 ◽  
Author(s):  
Stephan Müssig ◽  
Björn Kuttich ◽  
Florian Fidler ◽  
Daniel Haddad ◽  
Susanne Wintzheimer ◽  
...  

The controlled agglomeration of superparamagnetic iron oxide nanoparticles (SPIONs) was used to rapidly switch their magnetic properties. Small-angle X-ray scattering (SAXS) and dynamic light scattering showed that tailored iron oxide...


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 995
Author(s):  
Yucheng Peng ◽  
Xiaomeng Wang ◽  
Yue Wang ◽  
Yue Gao ◽  
Rui Guo ◽  
...  

The design of multimodal imaging nanoplatforms with improved tumor accumulation represents a major trend in the current development of precision nanomedicine. To this end, we report herein the preparation of macrophage (MA)-laden gold nanoflowers (NFs) embedded with ultrasmall iron oxide nanoparticles (USIO NPs) for enhanced dual-mode computed tomography (CT) and magnetic resonance (MR) imaging of tumors. In this work, generation 5 poly(amidoamine) (G5 PAMAM) dendrimer-stabilized gold (Au) NPs were conjugated with sodium citrate-stabilized USIO NPs to form hybrid seed particles for the subsequent growth of Au nanoflowers (NFs). Afterwards, the remaining terminal amines of dendrimers were acetylated to form the dendrimer-stabilized Fe3O4/Au NFs (for short, Fe3O4/Au DSNFs). The acquired Fe3O4/Au DSNFs possess an average size around 90 nm, display a high r1 relaxivity (1.22 mM−1 s−1), and exhibit good colloidal stability and cytocompatibility. The created hybrid DSNFs can be loaded within MAs without producing any toxicity to the cells. Through the mediation of MAs with a tumor homing and immune evasion property, the Fe3O4/Au DSNFs can be delivered to tumors more efficiently than those without MAs after intravenous injection, thus significantly improving the MR/CT imaging performance of tumors. The developed MA-mediated delivery system may hold great promise for enhanced tumor delivery of other contrast agents or nanomedicines for precision cancer nanomedicine applications.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ahmad Abulfathi Umar ◽  
Muhamad Fazly Abdul Patah ◽  
Faisal Abnisa ◽  
Wan Mohd Ashri Wan Daud

AbstractMagnetic hyperthermia therapy (MHT) is a highly promising therapeutic modality for the treatment of different kinds of cancers and malignant tumors. The therapy is based on the concept that; iron oxide nanoparticles deposited at cancer sites can generate heat when exposed to an alternating current magnetic field or near infrared radiation and consequently destroying only the cancer cells by exploiting their vulnerability to heat. The fact that the treatment is at molecular level and that iron oxide nanoparticles provide more guided focus heating justifies its efficacy over treatment such as surgery, radiation therapy and chemotherapy. Nevertheless, the spread of MHT as the next-generation therapeutics has been shadowed by insufficient heating especially at the in vivo stage. This can be averted by modifying the iron oxide nanoparticle structure. To this end, various attempts have been made by developing a magnetic hybrid nanostructure capable of generating efficient heat. However, the synthesis method for each component (of the magnetic hybrid nanostructure) and the grafting process is now an issue. This has a direct effect on the performance of the magnetic hybrid nanostructure in MHT and other applications. The main objective of this review is to detail out the different materials, methods and characterization techniques that have been used so far in developing magnetic hybrid nanostructure. In view of this, we conducted a comprehensive review and present a road map for developing a magnetic hybrid nanostructure that is capable of generating optimum heat during MHT. We further summarize the various characterization techniques and necessary parameters to study in validating the efficiency of the magnetic hybrid nanostructure. Hopefully, this contribution will serve as a guide to researchers that are willing to evaluate the properties of their magnetic hybrid nanostructure.


Nanoscale ◽  
2019 ◽  
Vol 11 (27) ◽  
pp. 12905-12914 ◽  
Author(s):  
Manman Xie ◽  
Shijia Liu ◽  
Christopher J. Butch ◽  
Shaowei Liu ◽  
Ziyang Wang ◽  
...  

Superparamagnetic iron oxide nanoparticles (SPIONs) have a history of clinical use as contrast agents in T2 weighted MRI, though relatively low T2 relaxivity has caused them to fall out of favor as new faster MRI techniques have gained prominence.


2015 ◽  
Vol 230 ◽  
pp. 108-113 ◽  
Author(s):  
O.V. Yelenich ◽  
S.O. Solopan ◽  
T.V. Kolodiazhnyi ◽  
Jean Marc Greneche ◽  
Anatolii G. Belous

In this work, iron oxide nanoparticles have been synthesized by precipitation in diethylene glycol, by cryochemical synthesis, in microemulsions using surfactants Triton X-100, Brij-35 and CTAB. Comparative spectroscopic, thermal, X-ray diffraction, 57Fe zero-field Mössbauer and magnetic studies of the synthesized nanoparticles have been carried out. Magnetic fluids prepared from synthesized nanopowders have been characterized by calorimetric measurements of specific loss power (SLP).


2021 ◽  
Vol 33 (10) ◽  
pp. 2287-2292
Author(s):  
K. Vijayashree ◽  
K. Sheshappa Rai

Insertion of metal-oxide nanoparticles to polymers stipulate the modification of physical properties of polymers over and above the accomplishment of new features in the polymer matrix. In the current study, an attempt was made to disperse the CuO nanoparticles in the polyvinyl alcohol and hydroxypropyl methylcellulose (HPMC) blend to investigate the structural, mechanical and optical properties of the nanocomposite. Blend was prepared in different ratios using PVA and HPMC, viz. 25:50, 50:50 and 75:25 wt%. The CuO nanoparticles were added to the 75:25 PVA:HPMC blend in different percentage like 0.5,1 and 1.5%. The polymer with and without CuO incorporation were subjected to X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, UV-visible spectral analyses and mechanical strength, etc. The results revealed that the incorporation of the CuO nanoparticles enhanced the structural and mechanical properties of the polymer by forming successful nanocomposite.


Author(s):  
BEENA JOSE ◽  
FEMY THOMAS

Objective: The objective of the present study is the synthesis of iron oxide nanoparticles using Annona muricata aqueous leaf extract, characterization of the synthesized nanoparticles and evaluation of the antibacterial, photocatalytic activity and cytotoxicity. Methods: The iron oxide nanoparticle was synthesized using Annona muricata aqueous leaf extract and the crystal structure of the iron oxide nanoparticle was determined by UV-Visible spectroscopy, Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). The in vitro cytotoxicity of iron oxide nanoparticles was evaluated using Dalton’s lymphoma ascites cells and the antibacterial assay was conducted using agar well diffusion method. Results: The UV-Visible spectrum of iron oxide nanoparticle showed a maximum absorption peak at 265 nm. This is the XRD pattern of iron oxide nanoparticles exhibited a distinct peak at 26.029 (2θ), accounting for crystal plane (211). SEM images revealed that the synthesized iron oxide nanoparticles were aggregated as irregular sphere shapes with rough surfaces. TEM image reveals the size of the synthesized iron oxide nanoparticles are spherical in shape with an average size of 20 nm. Green synthesized iron oxide nanoparticles using Annona muricata leaf extract effectively degraded methylene blue dye. Conclusion: This study showed that the synthesized iron oxide nanoparticles using Annona muricata aqueous leaf extract exhibited pronounced antibacterial, anticancer and photocatatytic activity and can be used in the textile industry for the purification of water contaminated with carcinogenic textile dyes. It can also be used as an external antiseptic in the prevention and treatment of bacterial infections.


Sign in / Sign up

Export Citation Format

Share Document