scholarly journals Partial Purification and Characterisation of Pectinase Produced by Aspergillus niger LFP-1 Grown on Pomelo Peels as a Substrate

2021 ◽  
Vol 32 (1) ◽  
pp. 1-22
Author(s):  
Mohd Taufiq Mat Jalil ◽  
◽  
Darah Ibrahim ◽  
◽  

In the present study, pectinase was produced by local fungal isolate, Aspergillus niger LFP-1 grown on pomelo peels as a sole carbon source under solid-state fermentation (SSF). The purification process begins with the concentration of crude enzyme using ammonium sulfate precipitation and followed by purification using anion-exchange column chromatography (DEAE-Sephadex) and subsequently using gel filtration column chromatography (Sephadex G-100). On the other hand, the molecular weight of the purified enzyme was determined through SDS-PAGE. The findings revealed the crude enzyme was purified up to 75.89 folds with a specific activity of 61.54 U/mg and the final yield obtained was 0.01%. The molecular mass of the purified pectinase was 48 kDa. The optimum pH and temperature were 3.5 and 50°C, respectively. This enzyme was stable at a range of pH 3.5 to 4.5 and a relatively high temperature (40°C–50°C) for 100 min. The Km and Vmax were found to be 3.89 mg/mL and 1701 U/mg, respectively. Meanwhile, pectin from citrus fruit and the metal ion (Co2+) were the best substrate and inducer to enhance pectinase yield, respectively.

1998 ◽  
Vol 64 (1) ◽  
pp. 216-220 ◽  
Author(s):  
Badal C. Saha ◽  
Rodney J. Bothast

ABSTRACT A color-variant strain of Aureobasidium pullulans (NRRL Y-12974) produced α-l-arabinofuranosidase (α-l-AFase) when grown in liquid culture on oat spelt xylan. An extracellular α-l-AFase was purified 215-fold to homogeneity from the culture supernatant by ammonium sulfate treatment, DEAE Bio-Gel A agarose column chromatography, gel filtration on a Bio-Gel A-0.5m column, arabinan-Sepharose 6B affinity chromatography, and SP-Sephadex C-50 column chromatography. The purified enzyme had a native molecular weight of 210,000 and was composed of two equal subunits. It had a half-life of 8 h at 75°C, displayed optimal activity at 75°C and pH 4.0 to 4.5, and had a specific activity of 21.48 μmol · min−1· mg−1 of protein againstp-nitrophenyl-α-l-arabinofuranoside (pNPαAF). The purified α-l-AFase readily hydrolyzed arabinan and debranched arabinan and released arabinose from arabinoxylans but was inactive against arabinogalactan. TheKm values of the enzyme for the hydrolysis of pNPαAF, arabinan, and debranched arabinan at 75°C and pH 4.5 were 0.26 mM, 2.14 mg/ml, and 3.25 mg/ml, respectively. The α-l-AFase activity was not inhibited at all byl-arabinose (1.2 M). The enzyme did not require a metal ion for activity, and its activity was not affected byp-chloromercuribenzoate (0.2 mM), EDTA (10 mM), or dithiothreitol (10 mM).


2021 ◽  
Author(s):  
Atsushi Miyashita ◽  
Keiko Kataoka ◽  
Toshio Tsuchida ◽  
Akihiko Ano Ogasawara ◽  
Hiroshi Hamamoto ◽  
...  

We prepared broccoli (Brassica oleracea var. italica) neutral polysaccharides (flow-through fractions of anion exchange column chromatography from hot water extracts) from different broccoli cultivars and compared their immunostimulatory effects in the silkworm muscle contraction assay. The cultivars showed a wide range of activity, with the cultivar 'Winter dome' showing the highest specific activity (more than 100 times higher than curdlan). Furthermore, the active substance was purified by gel filtration column chromatography. The active substance showed heterogeneous molecular weights of more than 270 kDa. Sugar composition analysis of the purified fraction revealed that more than 95% of its sugar component was glucose, suggesting that the immunostimulatory neutral polysaccharide from broccoli cultivar Winter dome was a homopolymer of glucose. The purified fraction also induced TNF production in cultured mouse macrophage cells. These results suggest that the glucose homopolymer in broccoli has an immunostimulatory effect on both arthropod and mammalian immune system.


2018 ◽  
Vol 22 (2) ◽  
pp. 47
Author(s):  
Akhmad Solikhin ◽  
Apon Zaenal Mustopa ◽  
Suharsono Suharsono ◽  
Wendry Setiyadi Putranto

   Lactobacillus casei WSP-derived an aspartic protease was sequentially purified by using chromatography gel filtration sephadex G-50. It resulted in a 22.81-fold increase of specific activity (51.5 U/mg) with a final yield of 1.9%. The estimated molecular weight of the purified enzyme was 37 kDa and showed gelatinolytic activity in zymogram assay. The enzyme exhibited optimum activity at 40ºC and pH 6 with casein as the substrate. Enzyme activity was significantly inhibited by pepstatin A (0.5 mM and 1 mM), confirming that this enzyme is a group of aspartic proteases, while other inhibitors such as EDTA, PMSF and iodoacetic acid showed no inhibition effect on the activity of enzyme. The addition of metal ion to the enzyme decreased enzyme activity, indicating the proteolytic enzyme was metal ion- dependent. Denaturant such as DDT tended to increase caseinolytic activity. Furthermore, this enzyme was capable of generating the new peptides from skimmed milk with the size 8 kDa, 10 kDa and 15 kDa. These peptides have potential as antibacterial and antioxidant agents.


1981 ◽  
Vol 45 (02) ◽  
pp. 121-126 ◽  
Author(s):  
Utako Okamoto ◽  
Noboru Horie ◽  
Yoko Nagamatsu ◽  
Jun-Ichiro Yamamoto

SummaryMilk plasminogen-activator was partially purified from human transitional milk collected at about 10 days after delivery, by a five-step procedure involving chloroform treatment, ammonium sulfate precipitation, and column chromatography on Sephadex G-150, CM Sephadex C-50 and DEAE Sephadex A-50. This gave milk-activator with a maximum purification factor of about 2,400-fold with respect to the skimmed milk. The CM Sephadex-step preparation showed, on polyacrylamide gel electrophoresis, a single plasminogen-activator activity band located between the bands of albumin and prealbumin of human serum. This preparation exhibited no kinin forming activity. The activator hydrolyzed acetyl-glycyl-L-lysine methyl ester with similar order kinetic constants to urokinase, and was inhibited strongly by diisopropyl-fluorophosphate. The molecular weight of the activator as estimated by gel filtration was approximately 86,000, the isoelectric points as estimated by gel isoelectric focusing were pH 7.2, 6.9 and 6.6, and the activator activity was not quenched by antiurokinase globulin, indicating that the milk-activator is a different entity from urokinase.


2021 ◽  
Vol 13 (2) ◽  
pp. 107-112
Author(s):  
C.F. Okechukwu ◽  
P.L. Shamsudeen ◽  
R.K. Bala ◽  
B.G. Kurfi ◽  
A.M. Abdulazeez

The most effective and acceptable therapy for snakebite victims is the immediate administration of antivenin which is limited by problems of hypersensitivity reactions in some individuals and its inability to resolve the local effects of the venom. The aim of this study was to isolate, partially purify and characterize phospholipase A2 from Naja Katiensis venom. Phospholipase A2 was partially purified via a two-step process: gel filtration on Sephadex G-75 and ion exchange chromatography using CM Sephadex, and subjected to SDS-PAGE analysis. From the results, the specific activity of the partially purified PLA2 decreased from 0.67μmol/min/mg in crude venom to 0.29μmol/min/mg after ion exchange chromatography with a yield of 5% and purification fold of 0.43. The optimum temperature of the purified PLA2 was found to be 35ºC and optimum p.H of 7. velocity studies for the determination of kinetic constants using L-a-lecithin as substrate revealed a Km  of 1.47mg/ml and Vmax  of 3.32μ moles/min/mg. The sodium dodecyl sulphate polyacrylamide gel electrophoresis of the purified PLA2 showed a distinct band with molecular weight estimated to be 14KDa. In conclusion, the present study shows that phospholipase A2 was isolated, purified and characterized. This may serve as a promising candidate for future development of a novel anti-venin drug.


1985 ◽  
Vol 114 (1) ◽  
pp. 397-414
Author(s):  
Nicholas Platt ◽  
Stuart E. Reynolds

1. A semi-isolated caterpillar heart bioassay was used to detect the presence of endogenous cardioactive material in the CNS of Manduca sexta larvae. 2. Cardioactivity was detected in all nervous tissue examined. Most activity (about 70% of the total in the CNS) was in the ganglia of the abdominal nerve cord (ANC). Cardioactivity was also detected in the abdominal transverse nerves, the proctodeal nerves and the corpora cardiaca/corpora allata. The source with the highest specific activity was the frontal ganglion. 3. Two factors, separable by Sephadex gel filtration, were distinguished in extracts of ANC: CAF 1, which has an estimated relative molecular mass (Mr) of about 4000, and CAF2 for which Mr is probably less than 1000. Both factors are apparently peptides. Neither is similar to any known insect cardioaccelerator. 4. Both CAF 1 and CAF 2 are able to cause cardioacceleration when injected into tetrodotoxin-paralysed caterpillars. 5. CAF 2 is present in both larvae and in adults. CAF 1 is present only in the caterpillar. The larval heart responds to both factors; the adult heart responds only to CAF 2. 6. Partial purification of CAF 1 and CAF 2 by reverse-phase HPLC gives a single peak of bioactivity in each case. 7. The biological activity of CAF 1 is destroyed by α-chymotrypsin, but not by trypsin. CAF 2 is not attacked by trypsin or by α-chymotrypsin. Treatment with performic acid or cyanogen bromide destroys the activity of both CAF 1 and CAF 2.


2005 ◽  
Vol 37 (6) ◽  
pp. 363-370 ◽  
Author(s):  
Ye-Yun Li ◽  
Chang-Jun Jiang ◽  
Xiao-Chun Wan ◽  
Zheng-Zhu Zhang ◽  
Da-Xiang Li

Abstractβ-Glucosidases are important in the formation of floral tea aroma and the development of resistance to pathogens and herbivores in tea plants. A novel β-glucosidase was purified 117-fold to homogeneity, with a yield of 1.26%, from tea leaves by chilled acetone and ammonium sulfate precipitation, ion exchange chromatography (CM-Sephadex C-50) and fast protein liquid chromatography (FPLC; Superdex 75, Resource S). The enzyme was a monomeric protein with specific activity of 2.57 U/mg. The molecular mass of the enzyme was estimated to be about 41 kDa and 34 kDa by SDS-PAGE and FPLC gel filtration on Superdex 200, respectively. The enzyme showed optimum activity at 50 °C and was stable at temperatures lower than 40 °C. It was active between pH 4.0 and pH 7.0, with an optimum activity at pH 5.5, and was fairly stable from pH 4.5 to pH 8.0. The enzyme showed maximum activity towards pNPG, low activity towards pNP-Galacto, and no activity towards pNP-Xylo.


2003 ◽  
Vol 69 (12) ◽  
pp. 7116-7123 ◽  
Author(s):  
Ho-Young Shin ◽  
Sun-Young Park ◽  
Jong Hwan Sung ◽  
Dong-Hyun Kim

ABSTRACT Two arabinosidases, α-l-arabinopyranosidase (no EC number) and α-l-arabinofuranosidase (EC 3.2.1.55), were purified from ginsenoside-metabolizing Bifidobacterium breve K-110, which was isolated from human intestinal microflora. α-l-Arabinopyranosidase was purified to apparent homogeneity, using a combination of ammonium sulfate fractionation, DEAE-cellulose, butyl Toyopearl, hydroxyapatite Ultrogel, QAE-cellulose, and Sephacryl S-300 HR column chromatography, with a final specific activity of 8.81 μmol/min/mg.α -l-Arabinofuranosidase was purified to apparent homogeneity, using a combination of ammonium sulfate fractionation, DEAE-cellulose, butyl Toyopearl, hydroxyapatite Ultrogel, Q-Sepharose, and Sephacryl S-300 column chromatography, with a final specific activity of 6.46 μmol/min/mg. The molecular mass ofα -l-arabinopyranosidase was found to be 310 kDa by gel filtration, consisting of four identical subunits (77 kDa each, measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis [SDS-PAGE]), and that ofα -l-arabinofuranosidase was found to be 60 kDa by gel filtration and SDS-PAGE. α-l-Arabinopyranosidase and α-l-arabinofuranosidase showed optimal activity at pH 5.5 to 6.0 and 40°C and pH 4.5 and 45°C, respectively. Both purified enzymes were potently inhibited by Cu2+ and p-chlormercuryphenylsulfonic acid.α -l-Arabinopyranosidase acted to the greatest extent on p-nitrophenyl-α-l-arabinopyranoside, followed by ginsenoside Rb2. α-l-Arabinofuranosidase acted to the greatest extent on p-nitrophenyl-α-l-arabinofuranoside, followed by ginsenoside Rc. Neither enzyme acted on p-nitrophenyl-β-galactopyranoside or p-nitrophenyl-β-d-fucopyranoside. These findings suggest that the biochemical properties and substrate specificities of these purified enzymes are different from those of previously purified α-l-arabinosidases. This is the first reported purification ofα -l-arabinopyranosidase from an anaerobic Bifidobacterium sp.


2019 ◽  
Vol 23 (10) ◽  
pp. 46
Author(s):  
Saif M. Hasan ◽  
Firas T. Maher ◽  
Nagham Q. Kadhim

This study was done to partially purification of  topoisomerase IB from serum of diabetic patients using Gel filtration technique, by using Sephadex G 100 gel. A single peak in fraction four has been obtained, and the degree of purification (17.1) fold, enzyme yield (108.2%) and specific activity (0.189ng/mg). Kinetics studies for the partial purified enzyme were carried out which showed optimal concentration of  substrate which was (0.1ng/ml), Michael's - Menten constant (Km=0.033ng) and maximum velocity (Vmax=0.90 ng/ml), while optimum Temperature was (37C°) and optimum pH was (7.5). The molecular weight of the partial purified enzyme has been determined by gel electrophoresis method, in presence of polyacrylamide  gel and sodium dodecyl sulphate (SDS-PAGE) which showed that the approximated molecular weight was (66KD).   http://dx.doi.org/10.25130/tjps.23.2018.168 


2002 ◽  
Vol 127 (2) ◽  
pp. 171-177 ◽  
Author(s):  
Andreas Brune ◽  
Mathias Müller ◽  
Lincoln Taiz ◽  
Pedro Gonzalez ◽  
Ed Etxeberria

Vacuolar acidification was investigated in `Palestine' sweet (Citrus limmetioides Tanaka) and `Persian' acid lime [(Citrus aurantifolia (Christm.) Swingle] (vacuolar pHs of 5.0 and 2.1, respectively) using tonoplast vesicles isolated from juice cells. The ATPase activity of tonoplast-enriched vesicles from sweet limes was strongly inhibited by bafilomycin A1 and NO3-, but was unaffected by vanadate. In contrast, the ATPase activity in acid lime membranes was only slightly inhibited by bafilomycin A1 and NO3- and was strongly inhibited by high concentrations of vanadate. The vacuolar origin of the acid lime vesicles was confirmed by immunoblotting. After solubilization and partial purification of the two enzymes by gel filtration, their inhibitor profiles were largely unchanged. Based on equal ATPase activities, vesicles from sweet and acid limes were able to generate similar pH gradients. However, in tonoplast vesicles from sweet limes, the maximum ΔpH was reached four times faster than in those from acid limes. Addition of ethylenediamine tetraacetic acid (EDTA) to chelate Mg+2 after the maximal ΔpH was attained resulted in collapse of the pH gradient in vesicles from sweet limes, whereas no change in ΔpH was observed in vesicles from acid limes, indicating a less H+ permeable membrane. Vacuolar ATPases from both cultivars exhibited identical pH optima and showed similar Mg+2 dependence, but only the acid lime ATPase activity was inhibited by Ca+2. These data confirm that the vanadate-sensitive form of the V-ATPase found in lemon and acid limes is specific to hyperacidifying tissues rather than to citrus juice cells. Sweet lime vacuoles bear the classical V-ATPase also found in vegetative plant tissues.


Sign in / Sign up

Export Citation Format

Share Document