scholarly journals Tillage and Low‐Pressure Center‐Pivot Irrigation Effects on Corn Yield 1

1985 ◽  
Vol 77 (2) ◽  
pp. 258-263
Author(s):  
W. W. Wilhelm ◽  
L. N. Mielke ◽  
J. R. Gilley
1984 ◽  
Vol 27 (6) ◽  
pp. 1753-1757 ◽  
Author(s):  
L. G. James ◽  
S. K. Blair

2020 ◽  
Author(s):  
Siiri Wickström ◽  
Marius O. Jonassen ◽  
John Cassano ◽  
Timo Vihma ◽  
Jørn Kristiansen

<p>Potentially high-impact warm and wet winter conditions have become increasingly common in recent decades in the arctic archipelago of Svalbard. In this study, we document present 2m temperature, precipitation and rain-on-snow (ROS) climate conditions in Svalbard and relate them to different atmospheric circulation (AC) types. For this purpose, we utilise a set of observations together with output from the high resolution numerical weather prediction model AROME-Arctic. We find that 2m median temperatures vary the most across AC types in winter and spring, and the least in summer. Southerly and southwesterly flow is associated with 10th percentile 2m temperatures above freezing in all seasons. In terms of precipitation, we find the highest amounts and intensities with onshore flow over open water. Sea ice appears to play a strong role in the local variability in both 2m temperature and precipitation. ROS is a frequent phenomenon in the study period, in particular below 250 m ASL. In winter, ROS only occurs with AC types from the southerly sector or during the passage of a low pressure centre or trough. Most of these events occur during southwesterly flow, with a low pressure center west of Svalbard.</p><p> </p>


2021 ◽  
Author(s):  
Yinghan Sang ◽  
Hong-Li Ren ◽  
Yi Deng ◽  
Xiaofeng Xu ◽  
Xueli Shi ◽  
...  

Abstract This paper reports findings from a diagnostic and modeling analysis that investigates the impact of the late-spring soil moisture anomaly over North Eurasia on the boreal summer rainfall over northern East Asia (NEA). Soil moisture in May in the region from the Kara-Laptev Sea coasts to Central Siberian Plateau is found to be negatively correlated with the summer rainfall from Mongolia to Northeast China. The atmospheric circulation anomalies associated with the anomalously dry soil are characterized by a pressure dipole with the high-pressure center located over North Eurasia and the low-pressure center over NEA, where an anomalous lower-level moisture convergence occurs, favoring rainfall formation. Diagnoses and Modeling experiments demonstrate that the effect of the spring low soil moisture over North Eurasia may persist into the following summer through modulating local surface latent and sensible heat fluxes, increasing low-level air temperature at higher latitudes, and effectively reducing the meridional temperature gradient. The weakened temperature gradient could induce the decreased zonal wind and the generation of a low-pressure center over NEA, associated with a favorable condition of local synoptic activity. The above relationships and mechanisms are vice versa for the prior wetter soil and decreased NEA rainfall. These findings suggest that soil moisture anomalies over North Eurasia may act as a new precursor providing an additional predictability source for better predicting the summer rainfall in NEA.


Author(s):  
C. David Whiteman

Atmospheric pressure at a given point in the atmosphere is the weight of a vertical column of air above that level. Differences in pressure from one location to another cause both horizontal motions (winds) and vertical motions (convection and subsidence) in the atmosphere. Vertical motions, whether associated with high and low pressure centers or with other meteorological processes, are the most important motions for producing weather because they determine whether clouds and precipitation form or dissipate. The location of high and low pressure centers is a key feature on weather maps, providing information about wind direction, wind speed, cloud cover, and precipitation. Pressure-driven winds carry air from areas where pressure is high to areas where pressure is low. However, the winds do not blow directly from a high pressure center to a low pressure center. Because of the effects of the rotation of the earth and friction, winds blow clockwise out of a high pressure center and counterclockwise into a low pressure center in the Northern Hemisphere. These wind directions are reversed in the Southern Hemisphere. The strength of the wind is proportional to the pressure difference between the two regions. When the pressure difference or pressure gradient is strong, wind speeds are high; when the pressure gradient is weak, wind speeds are low. As air flows out of a high pressure center, air from higher in the atmosphere sinks to replace it. This subsidence produces warming and the dissipation of clouds and precipitation. As air converges in a low pressure center, it rises and cools. If the air is sufficiently moist, cooling can cause the moisture to condense and form clouds. Further lifting of the air can produce precipitation. Thus, rising pressure readings at a given location indicate the approach of a high pressure center and fair weather, whereas falling pressure readings indicate the approach of a low pressure center and stormy weather. The vertical motions caused by the divergence of air out of a high pressure center or the convergence of air into a low pressure center are generally weak, with air rising or sinking at a rate of several cm per second, and they cannot be measured by routine weather observations.


2020 ◽  
Vol 12 (17) ◽  
pp. 2673
Author(s):  
Justin P. Stow ◽  
Mark A. Bourassa ◽  
Heather M. Holbach

This study assesses where tropical cyclone (TC) surface winds can be measured as a function of footprint sizes and wavelengths (Ka- Ku- and C-band). During TCs, most high-resolution surface observations are impeded by considerable ‘rain contamination.’ Under these conditions, high-resolution surface observations typically come from operational aircraft. Other techniques that provide high-resolution surface observations through rain are also hindered somewhat by rain contamination and are very sparse in space and time. The impacts of rain are functions of the remotely sensed wavelength and rain–drop size. Therefore, relative long wavelengths have been used to observe the surface, but at the cost of a larger footprint. We examine how smaller footprint sizes could be used to observe through gaps between moderate to heavy rainbands that circulate around the main low-pressure center of a TC. Aircraft data from the National Oceanic and Atmospheric Administration’s (NOAA’s) WP-3D turboprop aircraft will be used to create realistic maps of rain. Our results provide information on the satellite instrument characteristics needed to see the surface through these gaps. This information is expected to aid in developing hurricane-related applications of new higher-resolution satellites.


2008 ◽  
Vol 65 (8) ◽  
pp. 2469-2497 ◽  
Author(s):  
Robert Davies-Jones

Abstract This paper investigates whether the descending rain curtain associated with the hook echo of a supercell can instigate a tornado through a purely barotropic mechanism. A simple numerical model of a mesocyclone is constructed in order to rule out other tornadogenesis mechanisms in the simulations. The flow is axisymmetric and Boussinesq with constant eddy viscosity in a neutrally stratified environment. The domain is closed to avoid artificial decoupling of a vortex from the storm-scale circulation. In the principal simulation, the initial condition is a balanced, slowly decaying, Beltrami flow describing an updraft that is rotating cyclonically at midlevels around a low pressure center surrounded by a concentric downdraft that revolves cyclonically but has anticyclonic vorticity. The boundary conditions are no slip on the tangential wind and free slip on the radial or vertical wind to accommodate this initial condition and to allow strong interaction of a vortex with the ground. Precipitation is released through the top above the updraft and falls to the ground near the updraft–downdraft interface in an annular curtain. The downdraft enhancement induced by the precipitation drag upsets the balance of the Beltrami flow. The downdraft and its outflow toward the axis increase low-level convergence beneath the updraft and transport air with moderately high angular momentum downward and inward where it is entrained and stretched by the updraft. The resulting tornado has a corner region with an intense axial jet and low pressure capped by a vortex breakdown and a transition to a broader vortex aloft (a tornado cyclone). A clear slot of subsiding air with anticyclonic vorticity surrounds the vortex. The vertical kinetic energy of the entire circulation declines dramatically prior to tornado formation.


2014 ◽  
Vol 15 (2) ◽  
pp. 75
Author(s):  
Rini Mariana Sibarani

IntisariSiklon Tropis merupakan gangguan meteorologi yang disebabkan karena adanya pusat tekanan rendah di lautan. Syarat terbentuknya siklon tropis di daerah perairan adalah suhu muka laut (sst) cukup panas (T > 260C). Salah satu Siklon Tropis yang terjadi di perairan Indinesia adalah Siklon Tropis Gillian. Siklon Tropis ini terjadi di Selatan Perairan Indonesia, yang berlangsung selama 5 hari dari tanggal 21 Maret – 25 Maret 2014. Siklon Tropis Gillian ini mempengaruhi kondisi curah hujan di wilayah Indonesia bagian Utara, tepatnya di Pulau Sumatera Bagian Utara. Selama terjadinya Siklon Tropis Gillian mengakibatkan pengurangan Curah hujan di wilayah tersebut, terutama di daerah Provinsi Riau. Dari data yang diperoleh baik dari data Penakar POS METEOROLOGI maupun dari data Satelit TRMM Jaxa mulai tanggal 23 Maret – 27 Maret 2014, curah hujan yang tercatat di wilayah Riau dan sekitarnya mendekati 0 mm. Hal ini membuktikan bahwa Siklon Tropis Gillian di selatan Perairan Jawa mempengaruhi curah hujan di Pulau Sumatera Bagian Utara (Riau).  AbstrackTropical Cyclone is the meteorological disturbance due to the low pressure center in the ocean. Terms of tropical cyclone formation in the waters is the sea surface temperature (sst) is quite warm (T> 260C). Tropical Cyclone Gillian is one of Tropical Cyclone that occurred in the waters of Indinesia. This tropical cyclones occur in the Southern waters of Indonesian, which lasted for 5 days from March 21 to March 25, 2014. Tropical Cyclone Gillian affects rainfall in the northern part of Indonesia, precisely in Northern Sumatra Island. During the Tropical Cyclone Gillian lead to a reduction in rainfall in the region, especially in the province of Riau. Rainfall data from the POS METEOROLOGY and TRMM Satellite Jaxa began on March 23 to March 27, 2014, was recorded in Riau area close to 0 mm. This proves that the Tropical Cyclone Gillian in southern waters of Java affecting rainfall in Northern of Sumatera Island (Riau).


1980 ◽  
Vol 106 (1) ◽  
pp. 49-59 ◽  
Author(s):  
James R. Gilley ◽  
Lloyd B. Mielke
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document