A New High-Risk Environmental Pollutant 4-Tert-Butylphenol Threatens the Health of Fish: Tissue Damage, Oxidative Stress, Iron Overload, and Ferroptosis

2021 ◽  
Author(s):  
Jiawen Cui ◽  
Jingyang Zhang ◽  
Qi Sun ◽  
Meijin Yu ◽  
Hongyan Li ◽  
...  
2020 ◽  
Vol 99 (5) ◽  
pp. 504-508
Author(s):  
Natalija A. Egorova ◽  
N. V. Kanatnikova

Iron is an assential element for the growth, division, differentiation and functioning of any cell in the body. Iron is virtually important for human and danger at the same time, because with excessive accumulation it causes oxidative stress with formation of highly active oxygen radicals and reactive form of nitrogen that can destroy cell membranes, proteins, nucleic acids, reduce cell viability, with, according to modern concepts, can contribute to the development of many diseases (cardiovascular, rheumatic, gastrointestinal, neurodegenerative, oncological, metabolic and others), and also accelerate the aging process. Part 1 of this review discussed the issues of iron metabolism in human, including its regulation at the cellular and systemic levels, the intake, transport, use, accumulation and export of iron in cells, the role of the labile iron pool in the cytoplasm of cells and plasma non-transferrin bound iron. Data are provided on the causes, frequency and significance of iron overload in the formation of free radicals and the development of oxidative stress. Part 2 of the review provides information on diseases associated with iron overload as well as information on ferroptosis - a new type of iron-dependent regulated cell death. Attention is paid to the works of domestic authors, where it was found that prolonged use of drinking water with a high iron content is unfavorable for the population and leads to an increase in the overall incidence, the development of the diseases of the blood, skin and subcutaneous tissue, musculoskeletal system, digestive system, urogenital system, and allergic diseases. Separate publications are cited on the possibility of a negative effect of iron at concentrations in water of 0.3 mg/l and lower. The material of the review emphasizes the preventive significance of caution attitude to regulating iron in the water in the Russian Federation, where 1/3 of the population uses iron-containing water for drinking, and substantiate the feasibility of establishing a hygienic limit for iron in water not higher than 0.3 mg/l.


Author(s):  
Bita Barghi ◽  
Majid Shokoohi ◽  
Amir Afshin Khaki ◽  
Arash Khaki ◽  
Maryam Moghimian ◽  
...  

Author(s):  
Elaheh Ghasemi ◽  
Faezeh Afkhami Aghda ◽  
Mohammad Ebrahim Rezvani ◽  
Azadeh Shahrokhi Raeini ◽  
Zeynab Hafizibarjin ◽  
...  

AbstractBackgroundThe vascular changes due to cerebrovascular damage, especially on the capillaries, play a vital role in causing vascular dementia. Increasing oxidative stress can lead to tissue damage while reducing brain blood flow. The use of factors reducing the oxidative stress level can decrease the brain damages. Sulfur dioxide (SO2) is one of the most important air pollutants that lead to the development of severe brain damage in large quantities. However, studies have recently confirmed the protective effect of SO2 in cardiac ischemic injury, atherosclerosis and pulmonary infections.MethodsThe permanent bilateral common carotid artery occlusion (BCAO) method was used to induce chronic cerebral hypoperfusion (CCH). Two treatment groups of SO2 were studied. The animal cognitive performance was evaluated using the Morris water maze. Hippocampal tissue damage was examined after 2 months of BCAO. In the biochemical analysis, the activity of catalase and lipid peroxidation of the hippocampus was studied.ResultsNeuronal damage in hippocampus, as well as cognitive impairment in ischemia groups treated with SO2 showed a significant improvement. Catalase activity was also significantly increased in the hippocampus of treated groups.ConclusionsAccording to the results, SO2 is likely to be effective in reducing the CCH-caused damages by increasing the antioxidant capacity of the hippocampus.


2021 ◽  
pp. 112520
Author(s):  
Anil Khushalrao Shendge ◽  
Sourav Panja ◽  
Tapasree Basu ◽  
Nikhil Baban Ghate ◽  
Nripendranath Mandal

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Noha H. Habashy ◽  
Ahmad S. Kodous ◽  
Marwa M. Abu-Serie

AbstractCarbon tetrachloride (CCl4) is an abundant environmental pollutant that can generate free radicals and induce oxidative stress in different human and animal organs like the kidney, lung, brain, and spleen, causing toxicity. The present study evaluated the alleviative mechanism of the isolated polyphenolic fraction from seedless (pulp and skin) black Vitis vinifera (VVPF) on systemic oxidative and necroinflammatory stress in CCl4-intoxicated rats. Here, we found that the administration of VVPF to CCl4-intoxicated rats for ten days was obviously ameliorated the CCl4-induced systemic elevation in ROS, NO and TBARS levels, as well as MPO activity. Also, it upregulated the cellular activities of the enzymatic (SOD, and GPx) and non-enzymatic (TAC and GSH) antioxidants. Furthermore, the gene expression of the ROS-related necroinflammatory mediators (NF-κB, iNOS, COX-2, and TNF-α) in the kidney, brain, and spleen, as well as IL-1β, and IL-8 in the lung were greatly restored. The histopathological studies confirmed these biochemical results and showed a noticeable enhancing effect in the architecture of the studied organs after VVPF intake. Thus, this study indicated that VVPF had an alleviative effect on CCl4-induced necroinflammation and oxidative stress in rat kidney, lung, brain, and spleen via controlling the ROS/NF-κB pathway.


2013 ◽  
Vol 37 ◽  
pp. S113
Author(s):  
G. Felix de Souza ◽  
M. Cavalcante Barbosa ◽  
T. Ellen de Jesus Santos ◽  
T. Maria de Jesus Ponte Carvalho ◽  
R. Mendes de Freitas ◽  
...  

CNS Spectrums ◽  
2017 ◽  
Vol 24 (03) ◽  
pp. 333-337 ◽  
Author(s):  
Maiara Zeni-Graiff ◽  
Adiel C. Rios ◽  
Pawan K. Maurya ◽  
Lucas B. Rizzo ◽  
Sumit Sethi ◽  
...  

IntroductionOxidative stress has been documented in chronic schizophrenia and in the first episode of psychosis, but there are very little data on oxidative stress prior to the disease onset.ObjectiveThis work aimed to compare serum levels of superoxide dismutase (SOD) and glutathione peroxidase (GPx) in young individuals at ultra-high risk (UHR) of developing psychosis with a comparison healthy control group (HC).MethodsThirteen UHR subjects and 29 age- and sex-matched healthy controls (HC) were enrolled in this study. Clinical assessment included the Comprehensive Assessment of At-Risk Mental States (CAARMS), the Semi-Structured Clinical Interview for DSM-IV Axis-I (SCID-I) or the Kiddie-SADS-Present and Lifetime Version (K-SADS-PL), and the Global Assessment of Functioning (GAF) scale. Activities of SOD and GPx were measured in serum by the spectrophotometric method using enzyme-linked immunosorbent assay kits.ResultsAfter adjusting for age and years of education, there was a significant lower activity of SOD and lower GPX activity in the UHR group compared to the healthy control group (rate ratio [RR]=0.330, 95% CI 0.187; 0.584, p<0.001 and RR=0.509, 95% CI 0.323; 0.803, p=0.004, respectively). There were also positive correlations between GAF functioning scores and GPx and SOD activities.ConclusionOur results suggest that oxidative imbalances could be present prior to the onset of full-blown psychosis, including in at-risk stages. Future studies should replicate and expand these results.


PLoS ONE ◽  
2011 ◽  
Vol 6 (12) ◽  
pp. e28777 ◽  
Author(s):  
Mary C. Vázquez ◽  
Talía del Pozo ◽  
Fermín A. Robledo ◽  
Gonzalo Carrasco ◽  
Leonardo Pavez ◽  
...  

Author(s):  
Suneerat Hatairaktham ◽  
Patarabutr Masaratana ◽  
Chattree Hantaweepant ◽  
Chatchawan Srisawat ◽  
Vorapan Sirivatanauksorn ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document