scholarly journals Utility of Biodiesel in Diesel Engine

2020 ◽  
Vol 8 (1) ◽  
pp. 8-17
Author(s):  
Md. Zahidul Islam ◽  
Nusrat Jahan Onny ◽  
Suman Chowdhury

The energy resources from the fossil fuels are decreasing day by day. Rather fossil fuel is costly, it creates environmental problems by producing and NOx in the environment. Now it is argent to find a solution. The solution can be renewable energy. In this paper the effort was to find the utility of biodiesels in the conventional diesel engine. This biofuel or biodiesel is extracted from Soybean methyl ester (SME). We compared the basic performance characteristics diesel, SME 20 and SME 100 in unmodified diesel engine. This experiment will be helpful to find out the utility of SME type biodiesel in conventional diesel engine so that the uses of fossil fuels can be reduced in quick rental power plants and other uses. We can use biodiesel as substitute in an economic tariff and efficient way.

Author(s):  
Gift Nwabueze

This paper presents renewable energy resources development as a means of abating the shortfall in electricity generation in Nigeria. Levellized Bus-bar Cost Estimation method is used to carry out cost analysis of various power generation technologies by comparing their levellized costs. Carbon Emissions Pricing theory is also utilized to show that the cost per mega watt of renewable energy resources power plants can be comparable to their fossils counterpart when price is assigned to the emissions that result from using fossil fuels. Finally, government’s participation in time bound renewable energy projects, as well as financial and fiscal incentives are identified as actions that will encourage private sector investments in renewable energy development, which has a stimulating effect on the larger economy.


2010 ◽  
Vol 1 (2) ◽  
pp. 68
Author(s):  
Edgars Čubars

Increasing demand for energy, limited resources of fossil fuel, as well as pollution of the environment and changes of the global climate, have raised more interest in renewable resources. Support to the use of renewable resources has become a very important part of the European Union’s policy. The use of reeds like renewable energy resources allows saving fossil fuels. This paper presents the findings on the reed resources in lakes of Latgale (region in Latvia). The investigation of reed resources shows that the resources in the region are situated in a very uneven way. The greatest amount of reed resources is concentrated in the biggest lake in Latvia - Lubana Lake as well as near it. Using direct measurement methods and metering in the distance, it was stated that the total reed resources of Lubana Lake are 8,203? 2,999 tons, occupy 882 hectares and are situated in 429 reed blocks. Summary resources of Latgale region are 19,862? 7,409 tons. The amount of heat that can be obtained using reed resources of Latgale region is equivalent to 10,543 tons of natural gas or 8,802 tons of petroleum, or 13,092- 21,348 tons of coal (it depends on the heating of coal), or 7,675 tons of fuel, or 8,712 – 12,199 tons of oil (depends on the heating of oil).


2020 ◽  
Vol 119 (820) ◽  
pp. 317-322
Author(s):  
Michael T. Klare

By transforming patterns of travel and work around the world, the COVID-19 pandemic is accelerating the transition to renewable energy and the decline of fossil fuels. Lockdowns brought car commuting and plane travel to a near halt, and the mass experiment in which white-collar employees have been working from home may permanently reduce energy consumption for business travel. Renewable energy and electric vehicles were already gaining market share before the pandemic. Under pressure from investors, major energy companies have started writing off fossil fuel reserves as stranded assets that are no longer worth the cost of extracting. These shifts may indicate that “peak oil demand” has arrived earlier than expected.


2021 ◽  
Vol 13 (13) ◽  
pp. 7328
Author(s):  
Saeed Solaymani

Iran, endowed with abundant renewable and non-renewable energy resources, particularly non-renewable resources, faces challenges such as air pollution, climate change and energy security. As a leading exporter and consumer of fossil fuels, it is also attempting to use renewable energy as part of its energy mix toward energy security and sustainability. Due to its favorable geographic characteristics, Iran has diverse and accessible renewable sources, which provide appropriate substitutes to reduce dependence on fossil fuels. Therefore, this study aims to examine trends in energy demand, policies and development of renewable energies and the causal relationship between renewable and non-renewable energies and economic growth using two methodologies. This study first reviews the current state of energy and energy policies and then employs Granger causality analysis to test the relationships between the variables considered. Results showed that renewable energy technologies currently do not have a significant and adequate role in the energy supply of Iran. To encourage the use of renewable energy, especially in electricity production, fuel diversification policies and development program goals were introduced in the late 2000s and early 2010s. Diversifying energy resources is a key pillar of Iran’s new plan. In addition to solar and hydropower, biomass from the municipal waste from large cities and other agricultural products, including fruits, can be used to generate energy and renewable sources. While present policies indicate the incorporation of sustainable energy sources, further efforts are needed to offset the use of fossil fuels. Moreover, the study predicts that with the production capacity of agricultural products in 2018, approximately 4.8 billion liters of bioethanol can be obtained from crop residues and about 526 thousand tons of biodiesel from oilseeds annually. Granger’s causality analysis also shows that there is a unidirectional causal relationship between economic growth to renewable and non-renewable energy use. Labor force and gross fixed capital formation cause renewable energy consumption, and nonrenewable energy consumption causes renewable energy consumption.


2005 ◽  
Vol 9 (3) ◽  
pp. 15-23 ◽  
Author(s):  
Fajik Begic ◽  
Anes Kazagic

Along with the current processes of restructuring of Energy power system of Bosnia and Herzegovina, liberalization of the electricity market, and modernization of the existing power plants, Bosnia and Herzegovina must turn to the utilization of renewable resources in reason able dynamics as well. Respecting this policy, the initial Valuation of the potential of renewable erg resources in Bosnia and Herzegovina is per formed. The methodology of evaluation of wind energy utilization is presented in this paper, as well as some other aspects of utilization of the renewable energy resources in Bosnia and Herzegovina. Implementation of selected projects should improve sustainability of energy power production in Bosnia and Herzegovina, by reducing the total emission of carbon dioxide originated from energy power system of Bosnia and Herzegovina.


Author(s):  
Baba Dzhabrailovich Babaev ◽  
Vladimir Panchenko ◽  
Valeriy Vladimirovich Kharchenko

The main objective of the work is to develop principles for the formation of the optimal composition of the energy complex from all the given power plants based on renewable energy sources for an autonomous consumer, taking into account the variable energy loads of the consumer, changing climatic conditions and the possibility of using local fuel and energy resources. As a result of solving this optimization problem, in addition to the optimal configuration of the power complex, it is also necessary to solve the problem of optimizing the joint operation of different types of power plants from the selected optimal configuration, that is, it is necessary to determine the optimal modes of operation of power plants and the optimal share of their participation in providing consumers at every moment in time. A numerical method for analyzing and optimizing the parameters and operating mode of the energy complex with the most accurate consideration of the schedule of changes in consumer load and software that automates the solution of this optimization problem are also presented.


Atmosphere ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 476
Author(s):  
Kevin J. Warner ◽  
Glenn A. Jones

China and India are not only the two most populous nations on Earth, they are also two of the most rapidly growing economies. Historically, economic and social development have been subsidized by cheap and abundant fossil-fuels. Climate change from fossil-fuel emissions has resulted in the need to reduce fossil-fuel emissions in order to avoid catastrophic warming. If climate goals are achieved, China and India will have been the first major economies to develop via renewable energy sources. In this article, we examine the factors of projected population growth, available fossil-fuel reserves, and renewable energy installations required to develop scenarios in which both China and India may increase per capita energy consumption while remaining on trach to meet ambitious climate goals. Here, we show that China and India will have to expand their renewable energy infrastructure at unprecedented rates in order to support both population growth and development goals. In the larger scope of the literature, we recommend community-based approaches to microgrid and cookstove development in both China and India.


Author(s):  
K. G. Burra ◽  
A. K. Gupta

Abstract Rising atmospheric CO2 levels from significant imbalance between carbon emissions from fossil fuel utilization, especially for energy and chemicals, and natural carbon sequestration rates is known to drive-up the global temperatures and associated catastrophic climate changes, such as rising mean sea level, glacial melting, and extinction of ecosystems. Carbon capture and utilization techniques are necessary for transition from fossil fuel infrastructure to renewable energy resources to help delay the dangers of reaching to the point of positive feedback between carbon emissions and climate change which can drive terrestrial conditions to uninhabitable levels. CO2 captured from the atmosphere directly or from flue gases of a power plant can be recycled and transformed to CO and syngas for use as energy and value-added chemicals. Utilizing renewable energy resources to drive CO2 conversion to CO via thermochemical redox looping can provide a carbon negative renewable energy conversion pathway for sustainable energy production as well as value-added products. Substituted ferrites such as Co-ferrite, Mnferrite were found to be promising materials to aid the conversion of CO2 to CO at lower reduction temperatures. Furthermore, the conversion of these materials in the presence of Al2O3 provided hercynite cycling, which further lowered the reduction temperature. In this paper, Co-ferrite and Co-ferrite-alumina prepared via co-precipitation were investigated to understand their potential as oxygen carriers for CO2 conversion under isothermal redox looping. Isothermal reduction looping provided improved feasibility in redox conversion since it avoids the need for temperature swinging which improves thermal efficiency. These efforts alleviates the energy losses in heat recovery while also reducing thermal stresses on both the materials and the reactor. Lab-scale testing was carried out at 1673 K on these materials for extended periods and multiple cycles to gain insights into cyclic performance and the feasibility of sintering, which is a common issue in iron-oxide-based oxygen carriers. Cobalt doping provided with lowering of reduction temperature requirement at the cost of oxidation thermodynamic spontaneity that required increased oxidation temperature. At the concentrations examined, these opposing phenomenon made isothermal redox operation feasible by providing high CO yields comparable to oxygen carriers in the literature, which were operated at different temperatures for reduction and oxidation. Significantly high CO yields (∼ 750 μmol/g) were obtained from Co-ferrite isothermal redox looping. Co-ferrite-alumina provided lower CO yields compared to Co-ferrite. The oxygen storage was similar to those reported in the literature on isothermal H2O splitting, but with improved morphological stability at high temperature, especially compared to ferrite. This pathway of oxygen carrier development is considered suitable with further requirement in optimization for scaling of renewable CO2 conversion into valuable products.


2016 ◽  
Vol 22 (2) ◽  
pp. 173-190 ◽  
Author(s):  
Zorzeta Bakaki

AbstractExisting research suggests that both natural resource abundance and scarcity are likely to increase the risk of interstate and domestic conflict. Two crucial aspects, however, have largely been neglected in the existing literature: (1) the analysis of international crises (i.e. non-violent conflicts) and (2) the effects of different market conditions of energy resources. Especially a growing number of market participants can affect the strategic value of natural resources and, thus, the incentives for international crisis initiation. It is argued that different market structures make countries to adopt either aggressive or more peaceful behavior towards other states, and this is why I empirically then disaggregate fossil fuels along with the market that they belong to. This study examines 179 countries at the monadic level since 1980. The results suggest variation on the incentives of crisis initiation along the different fossil fuels, while I also correct for potential endogeneity issues.


Sign in / Sign up

Export Citation Format

Share Document