scholarly journals Applications of Ultrafiltration, Reverse Osmosis, Nanofiltration, and Microfiltration in Dairy and Food Industry

2021 ◽  
Vol 1 (1) ◽  
pp. 39-48
Author(s):  
Jasper Shekin J

Food industry is the place to convert raw edible materials to processed foods. Processing foods involves standardization, removal of unnecessary components, addition of essential components, thermal treatments etc. Membrane processes help enhancing the food primely in terms of keeping quality, nutritional value, component recovery and by-products utilization. Feed is given to the membrane system while retentate and permeate are obtained. Components of food can be separated according to size, charge and other characteristics using various membrane processes. The major ones are Ultrafiltration, Reverse Osmosis, Nanofiltration and Microfiltration which are done either single or in combination of more than one process and also in addition with processes such as electrodialysis and vacuum membrane distillation. These processes act as step(s) in the operating procedure of a food or as an alternative method to process the same food with better quality.

2019 ◽  
Vol 15 (5-6) ◽  
Author(s):  
Priscilla M. Lima ◽  
Fernanda T. V. Rubio ◽  
Marluci P. Silva ◽  
Lorena S. Pinho ◽  
Márcia G. C. Kasemodel ◽  
...  

AbstractBy-products from fruits and vegetables are slices and peels that have been removed or rejected by the food industry and are considered to have low commercial value. Pumpkin peel is a source of carotenoids, minerals, antioxidants and phenolic compounds. This work studied the nutritional value of pumpkin peel flours produced by convective drying (40 °C) and milling. Pumpkin peel flours contained high contents of insoluble fibres (24.46 g/100 g), potassium (19.1 g/kg) and iron (152.5 mg/kg). Carotenoids were extracted using hexane at 40 °C, and flour particles were classified by 35-, 80- and 100-mesh sieves. The total carotenoids content ranged from 216.9 to 306.8 μg/g. Fick’s second law model computed that 215 min was required to extract 99 % of the total carotenoids. This work evidenced the effects of particle size on carotenoids extraction efficiency and demonstrated that pumpkin by-product flour could be used as a food ingredient or natural dye.


Water ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 947 ◽  
Author(s):  
Anthoula Karanasiou ◽  
Margaritis Kostoglou ◽  
Anastasios Karabelas

Vacuum membrane distillation (VMD) is an attractive variant of the novel membrane distillation process, which is promising for various separations, including water desalination and bioethanol recovery through fermentation of agro-industrial by-products. This publication is part of an effort to develop a capillary membrane module for various applications, as well as a model that would facilitate VMD process design. Experiments were conducted in a laboratory pilot VMD unit, comprising polypropylene capillary-membrane modules. Performance data, collected at modest temperatures (37 °C to 65 °C) with deionized and brackish water, confirmed the improved system productivity with increasing feed-water temperature; excellent salt rejection was obtained. The recovery of ethanol from ethanol-water mixtures and from fermented winery by-products was also studied, in continuous, semi-continuous, and batch operating modes. At low-feed-solution temperature (27–47 °C), ethanol-solution was concentrated 4 to 6.5 times in continuous operation and 2 to 3 times in the semi-continuous mode. Taking advantage of the small property variation in the module axial-flow direction, a simple VMD process model was developed, satisfactorily describing the experimental data. This VMD model appears to be promising for practical applications, and warrants further R&D work.


2006 ◽  
Vol 60 (6) ◽  
Author(s):  
K. Karakulski ◽  
M. Gryta ◽  
M. Sasim

AbstractApplication of ultrafiltration, nanofiltration, reverse osmosis, membrane distillation, and integrated membrane processes for the preparation of process water from natural water or industrial effluents was investigated. A two-stage reverse osmosis plant enabled almost complete removal of solutes from the feed water. High-purity water was prepared using the membrane distillation. However, during this process a rapid membrane fouling and permeate flux decline was observed when the tap water was used as a feed. The precipitation of deposit in the modules was limited by the separation of sparingly soluble salts from the feed water in the nanofiltration. The combined reverse osmosis—membrane distillation process prevented the formation of salt deposits on the membranes employed for the membrane distillation. Ultrafiltration was found to be very effective removing trace amounts of oil from the feed water. Then the ultrafiltration permeate was used for feeding of the remaining membrane modules resulting in the total removal of oil residue contamination. The ultrafiltration allowed producing process water directly from the industrial effluents containing petroleum derivatives.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Bhausaheb L. Pangarkar ◽  
Mukund G. Sane ◽  
Mahendra Guddad

In recent years, the increasing threat to groundwater quality due to human activities has become a matter of great concern. The groundwater quality problems present today are caused by contamination and by overexploitation, or by combination of both, which are faced by many Indian states. Today, reverse osmosis (RO) membranes are the leading technology for desalination of groundwater because of their strong separation capabilities and exhibiting a great potential for treatment of waters worldwide. However, the RO process had some problems due to the formation of polarization films because high pressure operation and by-products which may generate bacteria and fouling. Also, high energy consumption and brine disposal problem is faced in RO process due to the limited recovery of water. These problems may be overcome by other membrane thermal process such as a membrane distillation (MD). This paper addresses the outline of RO and MD process for desalination. RO has developed over the past 40 years and MD is an emerging technology for brackish water desalination and yet is not fully implemented in industry. The MD is the better alternative to RO for desalination theoretically found in the literature.


2021 ◽  
Vol 12 ◽  
Author(s):  
Elena Bartkiene ◽  
Vadims Bartkevics ◽  
Iveta Pugajeva ◽  
Anastasija Borisova ◽  
Egle Zokaityte ◽  
...  

During plant-based drinks production a significant amount of valuable by-products (BPs) is obtained. The valorization of BPs is beneficial for both the environment and the food industry. The direct incorporation of the fermented and/or ultrasonicated almond, coconut, and oat drinks production BPs in other food products, such as wheat bread (WB) could lead to the better nutritional value as well as quality of WB. Therefore, in this study, various quantities (5, 10, 15, and 20%) of differently treated [ultrasonicated (37 kHz) or fermented with Lacticaseibacillus casei LUHS210] almond, coconut, and oat drinks preparation BPs were used in wheat bread (WB) formulations. Microbiological and other quality parameters (acidity, color, specific volume, porosity, moisture content, overall acceptability) as well as bread texture hardness during the storage and acrylamide content in the WB were evaluated. Among the fermented samples, 12-h-fermented almond and oat, as well as 24-h-fermented coconut drinks preparation BPs (pH values of 2.94, 2.41, and 4.50, respectively; total enterobacteria and mold/yeast were not found) were selected for WB production. In most cases, the dough and bread quality parameters were significantly (p ≤ 0.05) influenced by the BPs used, the treatment of the BPs, and the quantity of the BPs. The highest overall acceptability of the WB prepared with 20% fermented almond drink preparation by-product (AP), 15% fermented oat drink preparation by-product (OP), and 15% ultrasonicated OP was established. After 96 h of storage, the lowest hardness (on average, 1.2 mJ) of the breads prepared with 5% fermented AP, coconut drink preparation by-product (CP), and OP and ultrasonicated CP was found. The lowest content of acrylamide in the WB prepared with OP was found (on average, 14.7 μg/kg). Finally, 15% fermented OP could be safely used for WB preparation because the prepared bread showed high overall acceptability, as well as low acrylamide content.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1793
Author(s):  
Marta Barral-Martinez ◽  
Maria Fraga-Corral ◽  
Pascual Garcia-Perez ◽  
Jesus Simal-Gandara ◽  
Miguel A. Prieto

The search for waste minimization and the valorization of by-products are key practices for good management and improved sustainability in the food industry. The production of almonds generates a large amount of waste, most of which is not used. Until now, almonds have been used for their high nutritional value as food, especially almond meat. The other remaining parts (skin, shell, hulls, etc.) are still little explored, even though they have been used as fuel by burning or as livestock feed. However, interest in these by-products has been increasing as they possess beneficial properties (caused mainly by polyphenols and unsaturated fatty acids) and can be used as new ingredients for the food, cosmetic, and pharmaceutical industries. Therefore, it is important to explore almond’s valorization of by-products for the development of new added-value products that would contribute to the reduction of environmental impact and an improvement in the sustainability and competitiveness of the almond industry.


2003 ◽  
Vol 3 (5-6) ◽  
pp. 57-66 ◽  
Author(s):  
D. Wirth ◽  
C. Cabassud

This work addresses the potentialities of vacuum membrane distillation (VMD) using hollow fibre membranes for seawater desalination. Experiments were carried out with a synthetic salty water containing a concentration of NaCl from 0 up to 300 g/L. A Microza (Pall) hollow fibre module was used. Experimental results show that, for this module, concentration polarisation and heat transfer limitations are not significant and do not modify the permeate flux. This is a great advantage over reverse osmosis (RO). Energy consumption was then studied using computations based on modelling. Two different industrial plants were considered: the first one consisted of hollow fibre modules arranged in series and operated in a single-pass. The second one was designed for a discontinuous operation using a circulation loop. Computations clearly show the interest (low energy consumption) of VMD for seawater desalination in comparison with RO.


Sign in / Sign up

Export Citation Format

Share Document