scholarly journals The 14-3-3 (YWHA) Proteins in Signalling and Development of the Fruit Fly, Drosophila melanogaster

2019 ◽  
Vol 9 (1) ◽  
pp. 80-85 ◽  
Author(s):  
Santanu De

The 14-3-3 (YWHA or Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase Activation proteins) are a family of highly conserved, homologous proteins critical to diverse cellular events including cell cycle, signal transduction and embryonic development.  Various species-specific isoforms of 14-3-3 exist, encoded by separate genes.  They are expressed in a wide variety of organisms ranging from plants to animals, including the fruit fly or Drosophila melanogaster.  Drosophila is one of the most universally accepted model systems to study complex cellular mechanisms of signalling and development.  However, regulation of these processes in fruit flies by the 14-3-3 proteins have not been entirely understood.  This mini review encapsulates the expression, distribution, interactions and regulatory roles of the 14-3-3 proteins in Drosophila.  The analysis would help to elucidate some of the molecular bases of key cell-signalling mechanisms and development.

2015 ◽  
Vol 370 (1677) ◽  
pp. 20140211 ◽  
Author(s):  
David Owald ◽  
Suewei Lin ◽  
Scott Waddell

The fruit fly Drosophila melanogaster has emerged as a popular model to investigate fundamental principles of neural circuit operation. The sophisticated genetics and small brain permit a cellular resolution understanding of innate and learned behavioural processes. Relatively recent genetic and technical advances provide the means to specifically and reproducibly manipulate the function of many fly neurons with temporal resolution. The same cellular precision can also be exploited to express genetically encoded reporters of neural activity and cell-signalling pathways. Combining these approaches in living behaving animals has great potential to generate a holistic view of behavioural control that transcends the usual molecular, cellular and systems boundaries. In this review, we discuss these approaches with particular emphasis on the pioneering studies and those involving learning and memory.


Development ◽  
2021 ◽  
Vol 148 (13) ◽  
Author(s):  
Susanna E. Brantley ◽  
Stefano Di Talia

ABSTRACT Understanding the mechanisms of embryonic cell cycles is a central goal of developmental biology, as the regulation of the cell cycle must be closely coordinated with other events during early embryogenesis. Quantitative imaging approaches have recently begun to reveal how the cell cycle oscillator is controlled in space and time, and how it is integrated with mechanical signals to drive morphogenesis. Here, we discuss how the Drosophila embryo has served as an excellent model for addressing the molecular and physical mechanisms of embryonic cell cycles, with comparisons to other model systems to highlight conserved and species-specific mechanisms. We describe how the rapid cleavage divisions characteristic of most metazoan embryos require chemical waves and cytoplasmic flows to coordinate morphogenesis across the large expanse of the embryo. We also outline how, in the late cleavage divisions, the cell cycle is inter-regulated with the activation of gene expression to ensure a reliable maternal-to-zygotic transition. Finally, we discuss how precise transcriptional regulation of the timing of mitosis ensures that tissue morphogenesis and cell proliferation are tightly controlled during gastrulation.


2005 ◽  
Vol 288 (2) ◽  
pp. R511-R521 ◽  
Author(s):  
R. M. Douglas ◽  
R. Farahani ◽  
P. Morcillo ◽  
A. Kanaan ◽  
T. Xu ◽  
...  

Hypoxia induces a stereotypic response in Drosophila melanogaster embryos: depending on the time of hypoxia, embryos arrest cell cycle activity either at metaphase or just before S phase. To understand the mechanisms underlying hypoxia-induced arrest, two kinds of experiments were conducted. First, embryos carrying a kinesin-green fluorescent protein construct, which permits in vivo confocal microscopic visualization of the cell cycle, showed a dose-response relation between O2 level and cell cycle length. For example, mild hypoxia (Po2 ∼55 Torr) had no apparent effect on cell cycle length, whereas severe hypoxia (Po2 ∼25–35 Torr) or anoxia (Po2 = 0 Torr) arrested the cell cycle. Second, we utilized Drosophila embryos carrying a heat shock promoter driving the string ( cdc25) gene (HS-STG3), which permits synchronization of embryos before the start of mitosis. Under conditions of anoxia, we induced a stabilization or an increase in the expression of several G1/S (e.g., dE2F1, RBF2) and G2/M (e.g., cyclin A, cyclin B, dWee1) proteins. This study suggests that, in fruit fly embryos, 1) there is a dose-dependent relationship between cell cycle length and O2 levels in fruit fly embryos, and 2) stabilized cyclin A and E2F1 are likely to be the mediators of hypoxia-induced arrest at metaphase and pre-S phase.


2021 ◽  
Vol 22 (2) ◽  
pp. 904
Author(s):  
Sophie Layalle ◽  
Laetitia They ◽  
Sarah Ourghani ◽  
Cédric Raoul ◽  
Laurent Soustelle

Amyotrophic lateral sclerosis (ALS) is a devastating adult-onset neurodegenerative disease characterized by the progressive degeneration of upper and lower motoneurons. Most ALS cases are sporadic but approximately 10% of ALS cases are due to inherited mutations in identified genes. ALS-causing mutations were identified in over 30 genes with superoxide dismutase-1 (SOD1), chromosome 9 open reading frame 72 (C9orf72), fused in sarcoma (FUS), and TAR DNA-binding protein (TARDBP, encoding TDP-43) being the most frequent. In the last few decades, Drosophila melanogaster emerged as a versatile model for studying neurodegenerative diseases, including ALS. In this review, we describe the different Drosophila ALS models that have been successfully used to decipher the cellular and molecular pathways associated with SOD1, C9orf72, FUS, and TDP-43. The study of the known fruit fly orthologs of these ALS-related genes yielded significant insights into cellular mechanisms and physiological functions. Moreover, genetic screening in tissue-specific gain-of-function mutants that mimic ALS-associated phenotypes identified disease-modifying genes. Here, we propose a comprehensive review on the Drosophila research focused on four ALS-linked genes that has revealed novel pathogenic mechanisms and identified potential therapeutic targets for future therapy.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rachel Paul ◽  
Guillaume Giraud ◽  
Katrin Domsch ◽  
Marilyne Duffraisse ◽  
Frédéric Marmigère ◽  
...  

AbstractFlying insects have invaded all the aerial space on Earth and this astonishing radiation could not have been possible without a remarkable morphological diversification of their flight appendages. Here, we show that characteristic spatial expression profiles and levels of the Hox genes Antennapedia (Antp) and Ultrabithorax (Ubx) underlie the formation of two different flight organs in the fruit fly Drosophila melanogaster. We further demonstrate that flight appendage morphology is dependent on specific Hox doses. Interestingly, we find that wing morphology from evolutionary distant four-winged insect species is also associated with a differential expression of Antp and Ubx. We propose that variation in the spatial expression profile and dosage of Hox proteins is a major determinant of flight appendage diversification in Drosophila and possibly in other insect species during evolution.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Arangasamy Yazhini ◽  
Narayanaswamy Srinivasan ◽  
Sankaran Sandhya

AbstractAfrotheria is a clade of African-origin species with striking dissimilarities in appearance and habitat. In this study, we compared whole proteome sequences of six Afrotherian species to obtain a broad viewpoint of their underlying molecular make-up, to recognize potentially unique proteomic signatures. We find that 62% of the proteomes studied here, predominantly involved in metabolism, are orthologous, while the number of homologous proteins between individual species is as high as 99.5%. Further, we find that among Afrotheria, L. africana has several orphan proteins with 112 proteins showing < 30% sequence identity with their homologues. Rigorous sequence searches and complementary approaches were employed to annotate 156 uncharacterized protein sequences and 28 species-specific proteins. For 122 proteins we predicted potential functional roles, 43 of which we associated with protein- and nucleic-acid binding roles. Further, we analysed domain content and variations in their combinations within Afrotheria and identified 141 unique functional domain architectures, highlighting proteins with potential for specialized functions. Finally, we discuss the potential relevance of highly represented protein families such as MAGE-B2, olfactory receptor and ribosomal proteins in L. africana and E. edwardii, respectively. Taken together, our study reports the first comparative study of the Afrotherian proteomes and highlights salient molecular features.


Genetics ◽  
2004 ◽  
Vol 166 (2) ◽  
pp. 835-881 ◽  
Author(s):  
Jennifer K Inlow ◽  
Linda L Restifo

Abstract Affecting 1-3% of the population, mental retardation (MR) poses significant challenges for clinicians and scientists. Understanding the biology of MR is complicated by the extraordinary heterogeneity of genetic MR disorders. Detailed analyses of &gt;1000 Online Mendelian Inheritance in Man (OMIM) database entries and literature searches through September 2003 revealed 282 molecularly identified MR genes. We estimate that hundreds more MR genes remain to be identified. A novel test, in which we distributed unmapped MR disorders proportionately across the autosomes, failed to eliminate the well-known X-chromosome overrepresentation of MR genes and candidate genes. This evidence argues against ascertainment bias as the main cause of the skewed distribution. On the basis of a synthesis of clinical and laboratory data, we developed a biological functions classification scheme for MR genes. Metabolic pathways, signaling pathways, and transcription are the most common functions, but numerous other aspects of neuronal and glial biology are controlled by MR genes as well. Using protein sequence and domain-organization comparisons, we found a striking conservation of MR genes and genetic pathways across the ∼700 million years that separate Homo sapiens and Drosophila melanogaster. Eighty-seven percent have one or more fruit fly homologs and 76% have at least one candidate functional ortholog. We propose that D. melanogaster can be used in a systematic manner to study MR and possibly to develop bioassays for therapeutic drug discovery. We selected 42 Drosophila orthologs as most likely to reveal molecular and cellular mechanisms of nervous system development or plasticity relevant to MR.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Xiaochan Xu ◽  
Wei Yang ◽  
Binghui Tian ◽  
Xiuwen Sui ◽  
Weilai Chi ◽  
...  

AbstractThe fruit fly, Drosophila melanogaster, has been used as a model organism for the molecular and genetic dissection of sleeping behaviors. However, most previous studies were based on qualitative or semi-quantitative characterizations. Here we quantified sleep in flies. We set up an assay to continuously track the activity of flies using infrared camera, which monitored the movement of tens of flies simultaneously with high spatial and temporal resolution. We obtained accurate statistics regarding the rest and sleep patterns of single flies. Analysis of our data has revealed a general pattern of rest and sleep: the rest statistics obeyed a power law distribution and the sleep statistics obeyed an exponential distribution. Thus, a resting fly would start to move again with a probability that decreased with the time it has rested, whereas a sleeping fly would wake up with a probability independent of how long it had slept. Resting transits to sleeping at time scales of minutes. Our method allows quantitative investigations of resting and sleeping behaviors and our results provide insights for mechanisms of falling into and waking up from sleep.


1982 ◽  
Vol 156 (6) ◽  
pp. 1635-1649 ◽  
Author(s):  
J C Cambier ◽  
J G Monroe ◽  
M J Neale

In an effort to further elucidate the early cellular events in generation of antibody responses, we have determined the requirements for antigen-specific initiation of the G0 to G1 transition by isolated trinitrophenol (TNP) -binding B lymphocytes. TNP-binding cells were isolated from normal B6D2F1 splenocyte populations using hapten affinity fractionation on disulfide-bonded TNP-gelatin-coated plates. Populations prepared in this way are greater than or equal to 96% immunoglobulin positive and 70-95% antigen binding. Isolated cells were cultured for 48 h in the presence of a variety of TNP conjugates including TNP-Brucella abortus (Ba), TNP-Ficoll, TNP-sheep erythrocytes (SRBC), TNP-human gamma globulin (HGG), or TNP-ovalbumin (OVA) before being harvested and subjected to acridine orange cell cycle analysis. As many as 80% of cells were in cycle by 48 h in response to TNP-Ba, a thymus-independent (TI1 antigen. A smaller proportion (congruent to 40%) were in cycle in response to TNP-Ficoll, a TI2 antigen. Significant activation was not detected in cultures challenged with the thymus-dependent immunogens TNP-SRBC, TNP-HGG, and TNP-OVA. Addition of interleukin 1 (IL-1), IL-2, B cell growth factor, and/or T cell-replacing factor to cultures did not facilitate responses to these immunogens, suggesting a requirement for antigen-specific T cell help for entry into cell cycle induced by thymus dependent antigens. Activation by TNP-Ba was antigen specific and independent of accessory cells, occurring with equal efficiency in bulk and single-cell cultures. Activation by TNP-Ba was inhibitable by anti-Fab and anti-mu antibodies, but not by anti-delta antibodies. Results indicate that activation of TNP-binding cells to enter cell cycle by TNP-Ba is independent of accessory cells and requires interaction of antigen with cell surface IgM. Exposure to thymus-dependent TNP-immunogens plus nonspecific helper factors is insufficient to cause entry of TNP-binding cells into cycle.


Sign in / Sign up

Export Citation Format

Share Document