scholarly journals Multiscale response of ionic systems to a spatially varying electric field

2017 ◽  
Vol 2 (3) ◽  
Author(s):  
Jesper Schmidt Hansen

In this paper the response of ionic systems subjected to a spatially varying electric field is studied. Following the Nernst-Planck equation, two forces driving the mass flux are present, namely, the concentration gradient and the electric potential gradient. The mass flux due to the concentration gradient is modelled through Fick’s law, and a new constitutive relation for the mass flux due to the potential gradient is proposed. In the regime of low screening the response function due to the potential gradient is closely related to the ionic conductivity. In the large screening regime, on the other hand, the response function is governed by the charge-charge structure. Molecular dynamics simulations are conducted and the two wavevector dependent response functions are evaluated for models of a molten salt and an ionic liquid. In the low screening regime the response functions show same wavevector dependency, indicating that it is the same underlying physical processes that govern the response. In the screening regime the wavevector dependency is very different and, thus, the overall response is determined by different processes. This is in agreement with the observed failure of the Nernst-Einstein relation.

2012 ◽  
Vol 30 (1) ◽  
pp. 49-56 ◽  
Author(s):  
M. Yamauchi ◽  
M. Takeda ◽  
M. Makino ◽  
T. Owada ◽  
I. Miyagi

Abstract. Radioactive materials from the accident at Fukushima Dai-ichi nuclear power plant (FNPP) in March 2011 spread over a large area, increasing the atmospheric electric conductivity by their ionizing effect, and reducing the vertical (downward) component of the DC electric field near the ground, or potential gradient (PG). PG data at Kakioka, 150 km away from the FNPP, showed independent changes compared to the radiation dose rate, and a comparison of these data revealed the local dynamics of the radioactive dust. (1) The initial drop of the PG to almost zero during 14–15 March is most likely due to radioactive dust suspended in the air near the ground during cloudy weather. (2) An episode of PG increase to more than 50 V m−1 on 16 March is most likely due to the re-suspension of the radioactive dust from the surface and subsequent removal from Kakioka by the strong wind from the non-contaminated area. (3) Low but finite values of the PG during 16–20 March most likely reflect a reduced amount of radioactive material near the ground after the above wind transported away the majority of the suspended radioactive dust. (4) Very low values of the PG after substantial rain on 20–22 March most likely reflect settlement of the radioactive material by rain-induced fallout. (5) Temporal recovery of daily variations from the end of March to the middle of April with low nighttime fair-weather baseline PG most likely reflects re-suspension of the radioactive dust into the air from the ground and trees, and subsequent transport to the other region or fallout to the ground until late April. (6) Weakening of the daily variation and gradual recovery of the nighttime fair-weather baseline after mid-April suggests a complete settlement of the radioactive material to the ground with partial migration to the subsurface.


2010 ◽  
Vol 09 (04) ◽  
pp. 387-394 ◽  
Author(s):  
YANG CHEN ◽  
YIWEN SUN ◽  
EMMA PICKWELL-MACPHERSON

In terahertz imaging, deconvolution is often performed to extract the impulse response function of the sample of interest. The inverse filtering process amplifies the noise and in this paper we investigate how we can suppress the noise without over-smoothing and losing useful information. We propose a robust deconvolution process utilizing stationary wavelet shrinkage theory which shows significant improvement over other popular methods such as double Gaussian filtering. We demonstrate the success of our approach on experimental data of water and isopropanol.


2005 ◽  
Vol 133 (11) ◽  
pp. 3148-3175 ◽  
Author(s):  
Daryl T. Kleist ◽  
Michael C. Morgan

Abstract The 24–25 January 2000 eastern United States snowstorm was noteworthy as operational numerical weather prediction (NWP) guidance was poor for lead times as short as 36 h. Despite improvements in the forecast of the surface cyclone position and intensity at 1200 UTC 25 January 2000 with decreasing lead time, NWP guidance placed the westward extent of the midtropospheric, frontogenetically forced precipitation shield too far to the east. To assess the influence of initial condition uncertainties on the forecast of this event, an adjoint model is used to evaluate forecast sensitivities for 36- and 48-h forecasts valid at 1200 UTC 25 January 2000 using as response functions the energy-weighted forecast error, lower-tropospheric circulation about a box surrounding the surface cyclone, 750-hPa frontogenesis, and vertical motion. The sensitivities with respect to the initial conditions for these response functions are in general very similar: geographically isolated, maximized in the middle and lower troposphere, and possessing an upshear vertical tilt. The sensitivities are maximized in a region of enhanced low-level baroclinicity in the vicinity of the surface cyclone’s precursor upper trough. However, differences in the phase and structure of the gradients for the four response functions are evident, which suggests that perturbations could be constructed to alter one response function but not necessarily the others. Gradients of the forecast error response function with respect to the initial conditions are used in an iterative procedure to construct initial condition perturbations that reduce the forecast error. These initial condition perturbations were small in terms of both spatial scale and magnitude. Those initial condition perturbations that were confined primarily to the midtroposphere grew rapidly into much larger amplitude upper-and-lower tropospheric perturbations. The perturbed forecasts were not only characterized by reduced final time forecast error, but also had a synoptic evolution that more closely followed analyses and observations.


2021 ◽  
Author(s):  
Stavros Stathopoulos ◽  
Stergios Misios ◽  
Konstantinos Kourtidis

<p>Here we examine the cause-and-effect relations between galactic cosmic rays, electric field, aerosols and clouds over a region of Atlantic Ocean, during a Forbush Decrease (FD) event on 07/12/2015, using Convergent Cross Mapping (CCM) method. For this purpose, we used FD data from the Neuron Monitor Database (NMDB), Potential Gradient data (PG) from Global Coordination of Atmospheric Electricity Measurements (GLOCAEM) and remote sensing data from MODIS/Aqua, namely Aerosol Optical Depth at 550nm (AOD), Cloud Fraction (CF), Cloud Optical Thickness (COT), Cloud Top Pressure (CTP), Cirrus Reflectance (CR) and Cloud Effective Radius-Liquid (CERL). A cause-and-effect relation was found between FD and AOD, CERL, CF and PG, over the region. On the other hand, no causal effect was found between FD and COT, CTP and CR. This research is funded in the context of the project "Cosmic and electric effects on aerosols and clouds” (MIS: 5049552) under the call for proposals “Support for researchers with emphasis on young researchers - Cycle B” (EDULL 103). The project is co-financed by Greece and the European Union (European Social Fund - ESF) by the Operational Programme Human Resources Development, Education and Lifelong Learning 2014-2020.</p>


Author(s):  
Chong-Won Lee ◽  
Kye-Si Kwon

Abstract A quick and easy but comprehensive identification method for asymmetry in an asymmetric rotor is proposed based on complex modal testing method. In this work, it is shown that the reverse directional frequency response function (reverse dFRF), which indicates the degree of asymmetry, can be identified with a simple method requiring only one vibration sensor and one exciter. To clarify physical realization associated with estimation of the reverse dFRF, its relation to the conventional frequency response functions, which are defined by the real input (exciter) and output (vibration sensor), are extensively discussed.


2014 ◽  
Vol 10 (4) ◽  
pp. 562-592 ◽  
Author(s):  
Rajneesh Kumar ◽  
Vandana Gupta

Purpose – The purpose of this paper is to depict the effect of thermal and diffusion phase-lags on plane waves propagating in thermoelastic diffusion medium with different material symmetry. A generalized form of mass diffusion equation is introduced instead of classical Fick's diffusion theory by using two diffusion phase-lags, one phase-lag of diffusing mass flux vector, represents the delayed time required for the diffusion of the mass flux and the other phase-lag of chemical potential, represents the delayed time required for the establishment of the potential gradient. The basic equations for the anisotropic thermoelastic diffusion medium in the context of dual-phase-lag heat transfer (DPLT) and dual-phase-lag diffusion (DPLD) models are presented. The governing equations for transversely isotropic and isotropic case are also reduced. The different characteristics of waves like phase velocity, attenuation coefficient, specific loss and penetration depth are computed numerically. Numerically computed results are depicted graphically for anisotropic, transversely isotropic and isotropic medium. The effect of diffusion and thermal phase-lags are shown on the different characteristic of waves. Some particular cases of result are also deduced from the present investigation. Design/methodology/approach – The governing equations of thermoelastic diffusion are presented using DPLT model and a new model of DPLD. Effect of phase-lags of thermal and diffusion is presented on different characteristic of waves. Findings – The effect of diffusion and thermal phase-lags on the different characteristic of waves is appreciable. Also the use of diffusion phase-lags in the equation of mass diffusion gives a more realistic model of thermoelastic diffusion media as it allows a delayed response between the relative mass flux vector and the potential gradient. Originality/value – Introduction of a new model of DPLD in the equation of mass diffusion.


Solid Earth ◽  
2012 ◽  
Vol 3 (2) ◽  
pp. 307-311 ◽  
Author(s):  
S. E. Smirnov ◽  
Y. V. Marapulets

Abstract. The effect was observed as a sharp fall of the electric potential gradient from +80 V m−1 down to –21 V m−1. After that the field returned to its normal level according to the formula of the capacitor discharge with 17 s characteristic time. Simultaneously, the response of the acoustic emission of surface rocks in the range of frequencies between 6.5 kHz and 11 kHz was evaluated.


Sign in / Sign up

Export Citation Format

Share Document