scholarly journals Areas and entropies in BFSS/gravity duality

2020 ◽  
Vol 8 (4) ◽  
Author(s):  
Tarek Anous ◽  
Joanna Karczmarek ◽  
Eric Mintun ◽  
Mark Van Raamsdonk ◽  
Benson Way

The BFSS matrix model provides an example of gauge-theory / gravity duality where the gauge theory is a model of ordinary quantum mechanics with no spatial subsystems. If there exists a general connection between areas and entropies in this model similar to the Ryu-Takayanagi formula, the entropies must be more general than the usual subsystem entanglement entropies. In this note, we first investigate the extremal surfaces in the geometries dual to the BFSS model at zero and finite temperature. We describe a method to associate regulated areas to these surfaces and calculate the areas explicitly for a family of surfaces preserving SO(8) symmetry, both at zero and finite temperature. We then discuss possible entropic quantities in the matrix model that could be dual to these regulated areas.

Author(s):  
TAKESHI OOTA

The β-deformed matrix models of Selberg type are introduced. They are exactly calculable by using the Macdonald-Kadell formula. With an appropriate choice of the integration contours and interactions, the partition function of the matrix model can be identified with the Nekrasov partition function for SU(2) gauge theory with Nf = 4. Known properties of good q-expansion basis for the matrix model are summarized.


2001 ◽  
Vol 16 (05) ◽  
pp. 856-865 ◽  
Author(s):  
DANIEL KABAT ◽  
GILAD LIFSCHYTZ ◽  
DAVID LOWE

We develop an approximation scheme for the quantum mechanics of N D0-branes at finite temperature in the 't Hooft large-N limit. The entropy of the quantum mechanics calculated using this approximation agrees well with the Bekenstein-Hawking entropy of a ten-dimensional non-extremal black hole with 0-brane charge. This result is in accord with the duality conjectured by Itzhaki, Maldacena, Sonnenschein and Yankielowicz. Our approximation scheme provides a model for the density matrix which describes a black hole in the strongly-coupled quantum mechanics.


2017 ◽  
Vol 32 (36) ◽  
pp. 1747018 ◽  
Author(s):  
Daisuke Kadoh

The duality conjecture states that [Formula: see text]-dimensional maximally supersymmetric Yang–Mills theory at finite temperature is expected to be dual to the non extremal black [Formula: see text]-brane at large N. We perform the lattice simulations of SYM for [Formula: see text] to investigate the validity of the conjecture. We show that the conjecture is qualitatively valid by comparing lattice results of the black [Formula: see text]-branes mass with analytic expectations in the gravity side.


1997 ◽  
Vol 12 (03) ◽  
pp. 183-193 ◽  
Author(s):  
I. I. Kogan ◽  
R. J. Szabo ◽  
G. W. Semenoff

We discuss some properties of a supersymmetric matrix model that is the dimensional reduction of supersymmetric Yang–Mills theory in 10 dimensions and which has been recently argued to represent the short-distance structure of M-theory in the infinite momentum frame. We describe a reduced version of the matrix quantum mechanics and derive the Nicolai map of the simplified supersymmetric matrix model. We use this to argue that there are no phase transitions in the large-N limit, and hence that S-duality is preserved in the full 11-dimensional theory.


2015 ◽  
Vol 30 (27) ◽  
pp. 1530054 ◽  
Author(s):  
Anosh Joseph

We review the status of recent investigations on validating the gauge-gravity duality conjecture through numerical simulations of strongly coupled maximally supersymmetric thermal gauge theories. In the simplest setting, the gauge-gravity duality connects systems of D0-branes and black hole geometries at finite temperature to maximally supersymmetric gauged quantum mechanics at the same temperature. Recent simulations show that nonperturbative gauge theory results give excellent agreement with the quantum gravity predictions, thus proving strong evidence for the validity of the duality conjecture and more insight into quantum black holes and gravity.


2009 ◽  
Vol 24 (28n29) ◽  
pp. 5235-5260
Author(s):  
TANAY K. DEY ◽  
SUDIPTA MUKHERJI ◽  
SUBIR MUKHOPADHYAY ◽  
SWARNENDU SARKAR

We study effective gauge theory at finite temperature on a three-sphere in the presence of an IR cutoff using AdS/CFT. Comparing with the thermodynamic behavior of its gravity dual, we analyze a phenomenological matrix model which describes the gauge theory in the strongly coupled regime. Subsequently, we study the behavior of the model as a function of the IR cutoff. We further argue that a similar matrix model represents the effective gauge theory on R3 with an IR-cutoff and analyze the model numerically.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
M. Beccaria ◽  
M. Billò ◽  
M. Frau ◽  
A. Lerda ◽  
A. Pini

Abstract We consider the $$ \mathcal{N} $$ N = 2 SYM theory with gauge group SU(N) and a matter content consisting of one multiplet in the symmetric and one in the anti-symmetric representation. This conformal theory admits a large-N ’t Hooft expansion and is dual to a particular orientifold of AdS5 × S5. We analyze this gauge theory relying on the matrix model provided by localization à la Pestun. Even though this matrix model has very non-trivial interactions, by exploiting the full Lie algebra approach to the matrix integration, we show that a large class of observables can be expressed in a closed form in terms of an infinite matrix depending on the ’t Hooft coupling λ. These exact expressions can be used to generate the perturbative expansions at high orders in a very efficient way, and also to study analytically the leading behavior at strong coupling. We successfully compare these predictions to a direct Monte Carlo numerical evaluation of the matrix integral and to the Padé resummations derived from very long perturbative series, that turn out to be extremely stable beyond the convergence disk |λ| < π2 of the latter.


2020 ◽  
Vol 18 (11) ◽  
pp. 2183-2204
Author(s):  
E.I. Moskvitina

Subject. This article deals with the issues related to the formation and implementation of the innovation capacity of the Russian Federation subjects. Objectives. The article aims to develop the organizational and methodological foundations for the formation of a model of the regional innovation subsystem. Methods. For the study, I used the methods of analysis and synthesis, economics and statistics analysis, and the expert assessment method. Results. The article presents a developed basis of the regional innovation subsystem matrix model. It helps determine the relationship between the subjects and the parameters of the regional innovation subsystem. To evaluate the indicators characterizing the selected parameters, the Volga Federal District regions are considered as a case study. The article defines the process of reconciliation of interests between the subjects of regional innovation. Conclusions. The results obtained can be used by regional executive bodies when developing regional strategies for the socio-economic advancement of the Russian Federation subjects.


Sign in / Sign up

Export Citation Format

Share Document