scholarly journals Circular RNA MAT2B Induces Colorectal Cancer Proliferation via Sponging miR-610, Resulting in an Increased E2F1 Expression

2020 ◽  
Vol Volume 12 ◽  
pp. 7107-7116
Author(s):  
Jian Pei Zhao ◽  
Li Li Chen
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xiangjie Wang ◽  
Shuang Liu ◽  
Bin Xu ◽  
Yabin Liu ◽  
Peng Kong ◽  
...  

Circular RNA (circRNA), a recently identified type of endogenous noncoding RNA, has been implicated in the occurrence and development of a variety of tumors; however, whether circ-SIRT1, derived from pre-mRNA of the parental SIRT1 gene, is involved in colorectal cancer (CRC) remains unknown, as do the potential underlying mechanisms. The expression of circ-SIRT1 in CRC cells and tissue was detected by RT-qPCR. Colony formation and Cell Counting Kit-8 assays were used to evaluate the effect of circ-SIRT1 knockdown on the proliferative ability of CRC cells. Wound healing and Transwell assays were used to assess the effect of circ-SIRT1 knockdown on the migratory and invasive capacity of CRC cells. RNA immunoprecipitation and RNA pull-down assays were employed to validate the binding of circ-SIRT1 to EIF4A3. Western blot was used to identify the changes in the expression of EIF4A3 and EMT-related proteins. The RT-qPCR results showed that circ-SIRT1 was highly expressed in CRC cells and tissue and was positively correlated with the depth of tumor invasion. Knocking down circ-SIRT1 inhibited the proliferation and invasion of CRC cells and EMT. We further found that EIF4A3 could bind to circ-SIRT1, and that overexpressing circ-SIRT1 decreased the abundance of EIF4A3 at the mRNAs of the EMT marker proteins N-cadherin and vimentin. Combined, our findings suggested that circ-SIRT1 regulates the expression of EMT-related proteins by preventing EIF4A3 recruitment to the respective mRNAs. Our results further indicate that circ-SIRT1 functions as an oncogene in CRC by promoting the proliferation, invasion, and EMT of CRC cells through the circ-SIRT1/EIF4A3/N-cadherin/vimentin pathway.


Author(s):  
Zizhen Si ◽  
Lei Yu ◽  
Haoyu Jing ◽  
Lun Wu ◽  
Xidi Wang

Abstract Background Long non-coding RNAs (lncRNA) are reported to influence colorectal cancer (CRC) progression. Currently, the functions of the lncRNA ZNF561 antisense RNA 1 (ZNF561-AS1) in CRC are unknown. Methods ZNF561-AS1 and SRSF6 expression in CRC patient samples and CRC cell lines was evaluated through TCGA database analysis, western blot along with real-time PCR. SRSF6 expression in CRC cells was also examined upon ZNF561-AS1 depletion or overexpression. Interaction between miR-26a-3p, miR-128-5p, ZNF561-AS1, and SRSF6 was examined by dual luciferase reporter assay, as well as RNA binding protein immunoprecipitation (RIP) assay. Small interfering RNA (siRNA) mediated knockdown experiments were performed to assess the role of ZNF561-AS1 and SRSF6 in the proliferative actives and apoptosis rate of CRC cells. A mouse xenograft model was employed to assess tumor growth upon ZNF561-AS1 knockdown and SRSF6 rescue. Results We find that ZNF561-AS1 and SRSF6 were upregulated in CRC patient tissues. ZNF561-AS1 expression was reduced in tissues from treated CRC patients but upregulated in CRC tissues from relapsed patients. SRSF6 expression was suppressed and enhanced by ZNF561-AS1 depletion and overexpression, respectively. Mechanistically, ZNF561-AS1 regulated SRSF6 expression by sponging miR-26a-3p and miR-128-5p. ZNF561-AS1-miR-26a-3p/miR-128-5p-SRSF6 axis was required for CRC proliferation and survival. ZNF561-AS1 knockdown suppressed CRC cell proliferation and triggered apoptosis. ZNF561-AS1 depletion suppressed the growth of tumors in a model of a nude mouse xenograft. Similar observations were made upon SRSF6 depletion. SRSF6 overexpression reversed the inhibitory activities of ZNF561-AS1 in vivo, as well as in vitro. Conclusion In summary, we find that ZNF561-AS1 promotes CRC progression via the miR-26a-3p/miR-128-5p-SRSF6 axis. This study reveals new perspectives into the role of ZNF561-AS1 in CRC.


RSC Advances ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 4234-4234
Author(s):  
Laura Fisher

Retraction of ‘Circular RNA hsa_circ_0000467 modulates SGK1 to facilitate cell migration, metastasis, and EMT while repressing apoptosis in colorectal cancer by sponging miR-383-5p’ by Chong Liu et al., RSC Adv., 2019, 9, 39294–39303, DOI: 10.1039/C9RA07900A.


2021 ◽  
Vol 12 (9) ◽  
Author(s):  
Xuexiu Zhang ◽  
Jianning Yao ◽  
Haoling Shi ◽  
Bing Gao ◽  
Haining Zhou ◽  
...  

AbstractCircular RNAs (circRNAs) have been reported to play crucial roles in the progression of various cancers, including colorectal cancer (CRC). SP1 (Sp1 transcription factor) is a well-recognized oncogene in CRC and is deemed to trigger the Wnt/β-catenin pathway. The present study was designed to investigate the role of circRNAs which shared the same pre-mRNA with SP1 in CRC cells. We identified that hsa_circ_0026628 (circ_0026628), a circular RNA that originated from SP1 pre-mRNA, was upregulated in CRC cells. Sanger sequencing and agarose gel electrophoresis verified the circular characteristic of circ_0026628. Functional assays including CCK-8, colony formation, transwell, immunofluorescence staining, and sphere formation assay revealed the function of circ_0026628. RNA pull-down and mass spectrometry disclosed the proteins interacting with circ_0026628. Mechanistic assays including RIP, RNA pull-down, CoIP, ChIP, and luciferase reporter assays demonstrated the interplays between molecules. The results depicted that circ_0026628 functioned as a contributor to CRC cell proliferation, migration, EMT, and stemness. Mechanistically, circ_0026628 served as the endogenous sponge of miR-346 and FUS to elevate SP1 expression at the post-transcriptional level, thus strengthening the interaction between SP1 and β-catenin to activate the Wnt/β-catenin pathway. In turn, the downstream gene of Wnt/β-catenin signaling, SOX2 (SRY-box transcription factor 2), transcriptionally activated SP1 and therefore boosted circ_0026628 level. On the whole, SOX2-induced circ_0026628 sponged miR-346 and recruited FUS protein to augment SP1, triggering the downstream Wnt/β-catenin pathway to facilitate CRC progression.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lanlan Xi ◽  
Quanlin Liu ◽  
Wei Zhang ◽  
Linshan Luo ◽  
Jingfeng Song ◽  
...  

Abstract Background Circular RNAs (circRNAs) have been reported to play vital roles in colorectal cancer (CRC). However, only a few circRNAs have been experimentally validated and functionally described. In this research, we aimed to reveal the functional mechanism of circCSPP1 in CRC. Methods 36 DOX sensitive and 36 resistant CRC cases participated in this study. The expression of circCSPP1, miR-944 and FZD7 were detected by quantitative real time polymerase chain reaction (qRT-PCR) and the protein levels of FZD7, MRP1, P-gp and LRP were detected by western blot. Cell proliferation, migration, invasion, and apoptosis were assessed by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay, transwell assay, or flow cytometry analysis, respectively. The interaction between miR-944 and circCSPP1 or frizzled-7 (FZD7) was predicted by Starbase 3.0 and verified by the dual luciferase reporter assay, RNA immunoprecipitation (RIP) assay and RNA pull down assay. Xenograft tumor assay was performed to examine the effect of circCSPP1 on tumor growth in vivo. Results The expression of circCSPP1 and FZD7 was upregulated while miR-944 expression was downregulated in doxorubicin (DOX)-resistant CRC tissues and cells. CircCSPP1 knockdown significantly downregulated enhanced doxorubicin sensitivity, suppressed proliferation, migration, invasion, and induced apoptosis in DOX-resistant CRC cells. Interestingly, we found that circCSPP1 directly downregulated miR-944 expression and miR-944 decreased FZD7 level through targeting to 3′ untranslated region (UTR) of FZD7. Furthermore, circCSPP1 mediated DOX-resistant CRC cell progression and doxorubicin sensitivity by regulating miR-944/FZD7 axis. Besides, circCSPP1 downregulation dramatically repressed CRC tumor growth in vivo. Conclusion Our data indicated that circCSPP1 knockdown inhibited DOX-resistant CRC cell growth and enhanced doxorubicin sensitivity by miR-944/FZD7 axis, providing a potential target for CRC therapy.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mandana Ameli-Mojarad ◽  
Melika Ameli-Mojarad ◽  
Mahrooyeh Hadizadeh ◽  
Chris Young ◽  
Hosna Babini ◽  
...  

AbstractColorectal cancer (CRC) is the 3rd most common type of cancer worldwide. Late detection plays role in one-third of annual mortality due to CRC. Therefore, it is essential to find a precise and optimal diagnostic and prognostic biomarker for the identification and treatment of colorectal tumorigenesis. Covalently closed, circular RNAs (circRNAs) are a class of non-coding RNAs, which can have the same function as microRNA (miRNA) sponges, as regulators of splicing and transcription, and as interactors with RNA-binding proteins (RBPs). Therefore, circRNAs have been investigated as specific targets for diagnostic and prognostic detection of CRC. These non-coding RNAs are also linked to metastasis, proliferation, differentiation, migration, angiogenesis, apoptosis, and drug resistance, illustrating the importance of understanding their involvement in the molecular mechanisms of development and progression of CRC. In this review, we present a detailed summary of recent findings relating to the dysregulation of circRNAs and their potential role in CRC.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Fei Pan ◽  
Dongqing Zhang ◽  
Na Li ◽  
Mei Liu

circRNAs (circular RNAs) are a family of noncoding RNAs and have diverse physiological and pathological functions. However, the functions and mechanisms of circRNAs in the development and progression of colorectal cancer (CRC) remain largely unknown. Here, we aimed to explore the functions and roles of circFAT1(e2) in CRC. qRT-PCR revealed that circFAT1(e2) in CRC tumor tissues was upregulated compared with that in adjacent normal tissues and was also upregulated in CRC cell lines. Small interfering RNAs (siRNAs) against circFAT1(e2) were used to decrease the expression of circFAT1(e2) in HCT116 and RKO cells in vitro. The roles of circFAT1(e2) in CRC cell metastasis and proliferation were then determined by transwell and CCK-8 assays. The results showed that circFAT1(e2) silencing markedly suppressed CRC growth. Moreover, we identified circFAT1(e2) as a promoter of CRC metastasis. Knockdown of circFAT1(e2) evidently reduced HCT116 and RKO cell migration and invasion. Furthermore, the regulatory relationship between circFAT1(e2) and its target miRNAs was verified by a luciferase reporter assay. We demonstrated that circFAT1(e2) could sponge miR-30e-5p, which regulated the expression level of integrin α6 (ITGA6), the downstream target gene of miR-30e-5p. Rescue assays demonstrated that knockdown of miR-30e-5p enhanced CRC proliferation and migration via ITGA6. Taken together, our results reveal the novel oncogenic roles of circFAT1(e2) in CRC through the miR-30e-5p/ITGA6 axis.


2019 ◽  
Vol 39 (12) ◽  
Author(s):  
Meiyuan Yang ◽  
Xiaoli Tang ◽  
Zheng Wang ◽  
Xiaoqing Wu ◽  
Dong Tang ◽  
...  

Abstract Colorectal cancer (CRC) is the third most common malignant tumor worldwide and is a serious threat to human health. MicroRNAs (miRNAs) play a key role in oncogenesis and cancer progression. MiRNA-125 (miR-125) is an important miRNA that is dysregulated in several kinds of cancers. Thus, we investigated the expression and effects of miR-125 and Transcriptional co-activator with PDZ-binding motif (TAZ) for a better understanding of the underlying mechanism of tumor progression in CRC, which may provide an emerging biomarker for diagnosis and treatment of CRC. We measured the expression levels of miR-125 in CRC tissues, adjacent tissues, and cell lines (e.g. HCT116, SW480, FHC) by quantitative real-time polymerase chain reaction (qRT-PCR). The effect of miR-125 on proliferation and invasion in CRC cells was detected by Cell Counting Kit-8 (CCK-8), clone formation assay, and transwell assay. Western blotting and qRT-PCR were used to investigate the expression of TAZ after knocking down miR-125 in HCT116 cells or overexpressing miR-125 in SW480 cells. MiR-125 was significantly down-regulated in CRC compared with pericarcinomatous tissue from 18 patients. An miR-125 inhibitor promoted CRC cell proliferation and invasion, while miR-125 mimic had the opposite effect. Moreover, we found that TAZ was an miR-125 target and the siRNA knockdown of TAZ could reverse the effect of the miR-125 inhibitor on proliferation and invasion in HCT116 cells. The present study shows that miR-125 suppresses CRC proliferation and invasion by targeting TAZ.


Sign in / Sign up

Export Citation Format

Share Document