scholarly journals Construction and Comprehensive Analysis of a ceRNA Network to Reveal Potential Novel Biomarkers for Triple-Negative Breast Cancer

2020 ◽  
Vol Volume 12 ◽  
pp. 7061-7075
Author(s):  
Lifei Ma ◽  
Guiqin Song ◽  
Meiyu Li ◽  
Xiuqing Hao ◽  
Yong Huang ◽  
...  
2021 ◽  
Vol 11 ◽  
Author(s):  
Wenxing Qin ◽  
Feng Qi ◽  
Jia Li ◽  
Ping Li ◽  
Yuan-Sheng Zang

The objective of this study was to construct a competitive endogenous RNA (ceRNA) regulatory network using differentially expressed long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and mRNAs in patients with triple-negative breast cancer (TNBC) and to construct a prognostic model for predicting overall survival (OS) in patients with TNBC. Differentially expressed lncRNAs, miRNAs, and mRNAs in TNBC patients from the TCGA and Metabric databases were examined. A prognostic model based on prognostic scores (PSs) was established for predicting OS in TNBC patients, and the performance of the model was assessed by a recipient that operated on a distinctive curve. A total of 874 differentially expressed RNAs (DERs) were screened, among which 6 lncRNAs, 295 miRNAs and 573 mRNAs were utilized to construct targeted and coexpression ceRNA regulatory networks. Eight differentially expressed genes (DEGs) associated with survival prognosis, DBX2, MYH7, TARDBP, POU4F1, ABCB11, LHFPL5, TRHDE and TIMP4, were identified by multivariate Cox regression and then used to establish a prognostic model. Our study shows that the ceRNA network has a critical role in maintaining the aggressiveness of TNBC and provides comprehensive molecular-level insight for predicting individual mortality hazards for TNBC patients. Our data suggest that these prognostic mRNAs from the ceRNA network are promising therapeutic targets for clinical intervention.


2017 ◽  
Vol 167 (3) ◽  
pp. 803-814 ◽  
Author(s):  
Rafael Canfield Brianese ◽  
Kivvi Duarte de Mello Nakamura ◽  
Fernanda Gabriella dos Santos Ramos Almeida ◽  
Rodrigo Fernandes Ramalho ◽  
Bruna Durães de Figueiredo Barros ◽  
...  

2021 ◽  
Author(s):  
Johnathan Abou-Fadel ◽  
Brian Grajeda ◽  
Xiaoting Jiang ◽  
Alyssa-Marie Cailing-De La O ◽  
Esmeralda Flores ◽  
...  

Breast cancer is the most commonly diagnosed cancer worldwide and remains the second leading cause of cancer death. While breast cancer mortality has steadily declined over the past decades through medical advances, an alarming disparity in breast cancer mortality has emerged between African American women (AAW) and Caucasian American women (CAW); and new evidence suggests more aggressive behavior of triple-negative breast cancer (TNBC) in AAW may contribute to racial differences in tumor biology and mortality. Progesterone (PRG) is capable of exerting its cellular effects through either its classic, non-classic or combined responses through binding to either classic nuclear PRG receptors (nPRs) or non-classic membrane PRG receptors (mPRs), warranting both pathways an equally important status in PRG-mediated signaling. In our previous report, we demonstrated that the CCM signaling complex (CSC) consisting of CCM1, CCM2, and CCM3 proteins can couple both nPRs and mPRs signaling cascades to form a CSC-mPRs-PRG-nPRs (CmPn) signaling network in nPR positive(+) breast cancer cells. In this report, we furthered our research by establishing the CSC-mPRs-PRG (CmP) signaling network in nPR(-) breast cancer cells, demonstrating that a common core mechanism exists, regardless of nPR(+/-) cell type. This is the first report stating that inducible expression patterns exist between CCMs and major mPRs in TNBC cells. Furthermore, we firstly show mPRs in TNBC cells are localized in the nucleus and participate in nucleocytoplasmic shuttling in a coordinately synchronized fashion with CCM proteins under steroid actions, following the same cellular distribution as other well-defined steroid hormone receptors. Finally, for the first time, we deconvoluted the CmP signalosome by using multi-omics approaches, which helped us understand key factors within the CmP network, and identify 21 specific biomarkers with potential clinical applications associated with AAW-TNBC tumorigenesis. These novel biomarkers could have immediate clinical implications to dramatically improve health disparities among AAW-TNBCs.


2021 ◽  
Author(s):  
Johnathan Abou-Fadel ◽  
Muaz Bhalli ◽  
Brian Grajeda ◽  
Jun Zhang

Objective: Triple-negative breast cancer (TNBC) constitutes ~15 percent of all diagnosed invasive breast cancer cases with limited options for treatment since immunotherapies that target the ER, PR and HER2 receptors are ineffective. Progesterone (PRG) is capable of inducing its effects through either classic, non-classic, or combined responses by binding to classic nuclear PRG receptors (nPRs) or non-classic membrane PRG receptors (mPRs). Under PRG-induced actions, we previously demonstrated that the CSC (CCM signaling complex) can couple both nPRs and mPRs into a CmPn signaling network which plays an important role in nPR(+) breast cancer tumorigeneses. We recently defined the novel CmP signaling network in TNBC cells, which overlapped with our previously defined CmPn network in nPR(+) breast cancer cells. Materials and Methods: Under mPRs-specific steroid actions, we measured alterations to key tumorigenesis pathways in Caucasian American Women (CAW)-TNBC cells, with RNAseq and Proteomic approaches. Results: TNBC in CAW share similar altered signaling pathways, under mPRs-specific steroid actions, demonstrating the overall aggressive nature of TNBCs, regardless of racial differences. Furthermore, in this report, we have identified 21 new CAW-TNBC specific candidate biomarkers that reinforce the definitive role of the CmP signaling network in TNBC tumorigenesis, initially identified in our previous studies with AAW-TNBCs. This new set of potential prognostic biomarkers may revolutionize molecular mechanisms and currently known concepts of tumorigenesis in CAW-TNBCs, leading to hopeful new therapeutic strategies.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7522 ◽  
Author(s):  
Xiang Song ◽  
Chao Zhang ◽  
Zhaoyun Liu ◽  
Qi Liu ◽  
Kewen He ◽  
...  

Triple-negative breast cancer (TNBC) is a particular subtype of breast malignant tumor with poorer prognosis than other molecular subtypes. Previous studies have demonstrated that some abnormal expression of non-coding RNAs including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) were closely related to tumor cell proliferation, apoptosis, invasion, migration and drug sensitivity. However, the role of non-coding RNAs in the pathogenesis of TNBC is still unclear. In order to characterize the molecular mechanism of non-coding RNAs in TNBC, we downloaded RNA data and miRNA data from the cancer genome atlas database. We successfully identified 686 message RNAs (mRNAs), 26 miRNAs and 50 lncRNAs as key molecules for high risk of TNBC. Then, we hypothesized that the lncRNA–miRNA–mRNA regulatory axis positively correlates with TNBC and constructed a competitive endogenous RNA (ceRNA) network of TNBC. Our series of analyses has shown that five molecules (TERT, TRIML2, PHBP4, mir-1-3p, mir-133a-3p) were significantly associated with the prognosis of TNBC, and there is a prognostic ceRNA sub-network between those molecules. We mapped the Kaplan–Meier curve of RNA on the sub-network and also suggested that the expression level of the selected RNA is related to the survival rate of breast cancer. Reverse transcription-quantitative polymerase chain reaction showed that the expression level of TRIML2 in TNBC cells was higher than normal. In general, our findings have implications for predicting metastasis, predicting prognosis and discovering new therapeutic targets for TNBC.


2019 ◽  
Vol 39 (4) ◽  
Author(s):  
Aimin Hu ◽  
Junyu Li ◽  
Shufang Ruan ◽  
Ying Fan ◽  
Yuqian Liao

Abstract Purpose: Triple-negative breast cancer (TNBC) is a highly heterogeneous disease. It is very important to explore novel biomarkers to better clarify the characteristics of TNBC. It has been reported that polymorphisms in claudin 1 (CLDN1) are associated with risk of several cancers. But till now, there is no report about these polymorphisms and TNBC. Patients and methods: Between January 2004 and December 2013, 267 patients with stage I–III primary TNBC were included in our study. We investigated the association between polymorphisms in CLDN1 gene and clinicopathological characteristics or survival of these patients. We used Haploview 4.2 software to identify Tag single nucleotide polymorphisms (SNPs). MassARRAY MALDI-TOF System was used for genotyping. Results: We found that rs10513846 GA genotype was associated with older age [P=0.013, hazard ratios (HR) = 2.231, 95% confidence interval (CI): 1.186–4.195]. Rs10513846 AA genotype carriers were more likely to develop grade 3 tumors (P=0.005, HR = 2.889, 95% CI: 1.389–6.007). And rs9283658 genotypes were also related to grade, more patients with grade 3 tumors were rs9283658 CC genotype carriers (P=0.023, HR = 0.446, 95% CI: 0.222–0.894). There was no association between polymorphisms in CLDN1 and survival of TNBC patients. After multivariate analysis, tumor size (P=0.021, HR = 3.146, 95% CI: 1.185–8.354) and lymph node status (P<0.001, HR = 10.930, 95% CI: 3.276–36.470) were demonstrated to be independent prognostic factors. Conclusion: We first demonstrated that polymorphisms in CLDN1 gene were associated with age and differentiation of TNBC patients.


Sign in / Sign up

Export Citation Format

Share Document