scholarly journals Dextran-b-poly(L-histidine) copolymer nanoparticles for pH-responsive drug delivery to tumor cells

2013 ◽  
pp. 3197 ◽  
Author(s):  
Young-IL Jeong ◽  
Jong-Ho Hwang ◽  
Cheol Woong Choi ◽  
Hyung-Wook Kim ◽  
Do Hyung Do Hyung Kim ◽  
...  
2016 ◽  
Vol 4 (12) ◽  
pp. 1802-1813 ◽  
Author(s):  
Na Peng ◽  
Bo Wu ◽  
Lei Wang ◽  
Weiyang He ◽  
Ziye Ai ◽  
...  

Novel pH-responsive and magnetic-targeting nanocarriers with high drug loading content were developed for pH-triggered targeting drug delivery in tumor cells.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5274
Author(s):  
Qian He ◽  
Rui Yan ◽  
Wanting Hou ◽  
Haibo Wang ◽  
Yali Tian

Numerous nanocarriers with excellent biocompatibilities have been used to improve cancer therapy. However, nonspecific protein adsorption of nanocarriers may block the modified nanoparticles in tumor cells, which would lead to inefficient cellular internalization. To address this issue, pH-responsive polyurethane prodrug micelles with a zwitterionic segment were designed and prepared. The micelle consisted of a zwitterionic segment as the hydrophilic shell and the drug Adriamycin (DOX) as the hydrophobic inner core. As a pH-responsive antitumor drug delivery system, the prodrug micelles showed high stability in a physiological environment and continuously released the drug under acidic conditions. In addition, the pure polyurethane carrier was demonstrated to be virtually non-cytotoxic by cytotoxicity studies, while the prodrug micelles were more efficient in killing tumor cells compared to PEG-PLGA@DOX. Furthermore, the DOX cellular uptake efficiency of prodrug micelles was proved to be obviously higher than the control group by both flow cytometry and fluorescence microscopy. This is mainly due to the modification of a zwitterionic segment with PU. The simple design of zwitterionic prodrug micelles provides a new strategy for designing novel antitumor drug delivery systems with enhanced cellular uptake rates.


2018 ◽  
Vol 54 (4) ◽  
pp. 3319-3330 ◽  
Author(s):  
Ning Sun ◽  
Rong Lei ◽  
Jianghui Xu ◽  
Subhas C. Kundu ◽  
Yurong Cai ◽  
...  

Author(s):  
Jiejun Peng ◽  
Yueyan Yin ◽  
Hongze Liang ◽  
Yuwen Lu ◽  
Hongying Zheng ◽  
...  

Plant virus nanoparticles (PVNPs) have been widely used for drug delivery, antibody development and medical imaging because of their good biodegradation and biocompatibility. Particles of pepper mild mottle virus (PMMoV) are elongated and may be useful as drug carriers because their shape favours long circulation, preferential distribution and increased cellular uptake. Moreover, its effective degradation in an acidic microenvironment enables a pH-responsive release of the encapsulated drug. In this study, genetic engineering techniques were used to form rod-shaped structures of nanoparticles (PMMoV) and folated-modified PMMoV nanotubes were prepared by polyethylene glycol (PEG) to provide targeted delivery of paclitaxel (PTX). FA@PMMoV@PTX nanotubes were designed to selectively target tumor cells and to release the encapsulated PTX in response to pH. Efficient cell uptake of FA@PMMoV@PTX nanotubes was observed when incubated with tumor cells, and FA@PMMoV@PTX nanotubes had superior cytotoxicity to free PTX, as reflected by cell survival and apoptosis. This system is a strong candidate for use in developing improved strategies for targeted treatment of tumors.


2020 ◽  
Author(s):  
busenur Aslanoglu ◽  
Ilya Yakavets ◽  
Vladimir Zorin ◽  
Henri-Pierre Lassalle ◽  
Francesca Ingrosso ◽  
...  

Computational tools have been used to study the photophysical and photochemical features of photosensitizers in photodynamic therapy (PDT) –a minimally invasive, less aggressive alternative for cancer treatment. PDT is mainly based by the activation of molecular oxygen through the action of a photoexcited sensitizer (photosensitizer). Temoporfin, widely known as mTHPC, is a second-generation photosensitizer, which produces the cytotoxic singlet oxygen when irradiated with visible light and hence destroys tumor cells. However, the bioavailability of the mostly hydrophobic photosensitizer, and hence its incorporation into the cells, is fundamental to achieve the desired effect on malignant tissues by PDT. In this study, we focus on the optical properties of the temoporfin chromophore in different environments –in <i>vacuo</i>, in solution, encapsulated in drug delivery agents, namely cyclodextrin, and interacting with a lipid bilayer.


2018 ◽  
Vol 25 (25) ◽  
pp. 3036-3057 ◽  
Author(s):  
Xiao Sun ◽  
Guilong Zhang ◽  
Zhengyan Wu

According to the differences of microenvironments between tumors and healthy tissues, if the anticancer drugs or magnetic resonance contrast agents (MRCAs) can be controlled to precisely match physiological needs at targeted tumor sites, it is expected to acquire better therapeutic efficacy and more accurate diagnosis. Over the decade, stimuli-responsive nanomaterials have been a research hotspot for cancer treatment and diagnosis because they show many excellent functions, such as in vivo imaging, combined targeting drug delivery and systemic controlled release, extended circulation time, etc. Among the various stimuli nanosystems, pH-stimuli mode is regarded as the most general strategy because of solid tumors acidosis. When exposed to weakly acidic tumor microenvironment, pH-responsive nanoplatforms can generate physicochemical changes for their structure and surface characteristics, causing drug release or contrast enhancement. In this review, we focused on the designs of various pH-responsive nanoplatforms and discussed the mechanisms of controlled drug release or switch on-off in MRCAs. This review also discussed the efficacy of cellular internalization for these nanoplatforms via endocytosis of acidic tumor cell. Meanwhile, nanoplatforms response to acidic intracellular pH (such as endosome, lysosome) are discussed, along with approaches for improving drug release performance and magnetic resonance contrast enhancement. A greater understanding of these pH-responsive nanoplatforms will help design more efficient nanomedicine to address the challenges encountered in conventional diagnosis and chemotherapy.


2017 ◽  
Vol 23 (3) ◽  
pp. 454-466 ◽  
Author(s):  
Daniele R. Nogueira-Librelotto ◽  
Cristiane F. Codevilla ◽  
Ammad Farooqi ◽  
Clarice M. B. Rolim

A lot of effort has been devoted to achieving active targeting for cancer therapy in order to reach the right cells. Hence, increasingly it is being realized that active-targeted nanocarriers notably reduce off-target effects, mainly because of targeted localization in tumors and active cellular uptake. In this context, by taking advantage of the overexpression of transferrin receptors on the surface of tumor cells, transferrin-conjugated nanodevices have been designed, in hope that the biomarker grafting would help to maximize the therapeutic benefit and to minimize the side effects. Notably, active targeting nanoparticles have shown improved therapeutic performances in different tumor models as compared to their passive targeting counterparts. In this review, current development of nano-based devices conjugated with transferrin for active tumor-targeting drug delivery are highlighted and discussed. The main objective of this review is to provide a summary of the vast types of nanomaterials that have been used to deliver different chemotherapeutics into tumor cells, and to ultimately evaluate the progression on the strategies for cancer therapy in view of the future research.


RSC Advances ◽  
2016 ◽  
Vol 6 (109) ◽  
pp. 107337-107343 ◽  
Author(s):  
Iman Rostami ◽  
ZiJian Zhao ◽  
ZiHua Wang ◽  
WeiKai Zhang ◽  
Yeteng Zhong ◽  
...  

Efficient drug delivery to the tumor cells was carried out with HER2 targeting peptide-conjugated PEGlyted PAMAM.


Author(s):  
Yifan Zhang ◽  
Xueying Peng ◽  
Xinbo Jing ◽  
Lin Cui ◽  
Shengchao Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document