scholarly journals ASSESSMENT OF AIRBORNE FUNGAL SPORES IN INDOOR ENVIRONMENT OF LIBRARIES IN NNAMDI AZIKIWE UNIVERSITY

2021 ◽  
Vol 9 (11) ◽  
pp. 506-520
Author(s):  
Chukwuemeka Chidera Godson ◽  
◽  
Obi Chioma Maureen ◽  
Ochiabuto Ogochukwu Barbara ◽  
Nwachukwu Chinazo Adannia ◽  
...  

Background: Polluted indoor environments pose health challenges such as allergy, infections, and toxicity. Most indoor air pollution comes from hazardous non-biological and biological agents. Due to the nature of the indoor environment of libraries, it is prone to colonization by fungal species. Method: Three sampling sites were used for the study and they include Festus Aghagbo Nwako Library, Main campus Awka, Medical Library, Nnewi Campus and Library Complex, Agulu campus. A total of 100 air samples were analyzed Using the Zefon A6 Single-stage microbial air sampler and Malt Extract Agar supplemented with 0.05mg/ml of chloramphenicol while 16 nasal swabs were collected from the staff present using sterile swab sticks. The mould isolates were identified using the slide culture technique while the yeast isolates were subjected to candida chrom agar and integral yeast plus identification. Antifungal susceptibility was performed using the integral yeast plus system and the agar well diffusion technique. Results: Out of the 100 air samples, a total of 625 fungal isolates were identified of which C.lunata 201 (32.16%) was the most predominant, while P. marneffi, P. expansum, A. restrictus, A. infectoria and R. rubra 1(0.16%) occurred the least. All significant at (p≤0.01). A total of 7 fungal spores were isolated from the 16 nasal swabs and appeared thus in descending order of frequency: P. notatum, 3 (42.85%), A. niger, C. lunata, C. albicans and F. aqueductum, 1(14.3%). Antifungal Susceptibility of the 28 yeast isolates indicated that C. famata, C. laurentii and C. luteolus, were all susceptible to commonly used antifungals in the integral yeast plus system with a 100% susceptibility value, while the mould isolates showed relatively moderate susceptibility to selected antifungals. Conclusion: The organisms isolated are well known to be pathogenic especially to immunocompromised individuals. Their presence in the indoor environment of libraries serves as a risk factor to both the library staff and visitors. Adequate precautionary measures and occasional environmental surveillance need to be inculcated in order to reduce the number of fungi in the indoor environment of these libraries.

Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 497
Author(s):  
Rafał Ogórek ◽  
Mateusz Speruda ◽  
Justyna Borzęcka ◽  
Agata Piecuch ◽  
Magdalena Cal

Most underground ecosystems are heterotrophic, fungi in these objects are dispersed in the air in the form of spores, and they may be potentially hazardous to mammals. Research in underground sites has focused on mesophilic airborne fungi and only a few concerned cold-adapted species. Therefore, the goal of our research was the first report of psychrophilic and psychrotolerant aeromycota in the Brestovská Cave using culture-based techniques with genetic and phenotypic identification. Plates with PDA medium containing sampled biological material were incubated at 8 ± 0.5 °C. The density of mycobiota inside the cave ranged from 37.4 to 71 CFU 1 m−3 of air and 63.3 CFU 1 m−3 of air outside the cave. Thus, the level of fungal spores did not exceed the standards for the mycological quality of the air. A total of 18 species were isolated during the study, and some species may be potentially dangerous to people with weakened immune system. All fungal species were present inside the cave and only seven of them were outside. Cladosporium cladosporioides dominated in the external air samples and Mortierella parvispora was cultured most frequently from internal air samples. To our knowledge, this is the first discovery of the fungal species such as Coniothyrium pyrinum, Cystobasidium laryngis, Filobasidium wieringae, Leucosporidium drummii, M. parvispora, Mrakia blollopis, Nakazawaea holstii, and Vishniacozyma victoriae in the air inside the underground sites. Moreover, C. pyrinum, C. laryngis, L. drummii, M. blollopis, and N. holstii have never been detected in any component of the underground ecosystems. There are possible reasons explaining the detection of those species, but global warming is the most likely.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
R. Pavan ◽  
K. Manjunath

Air pollution is one of the most serious problems to human health. Fungi are the causal agents for different diseases in animals, plants, and human beings. Otomycosis, chronic bronchitis, emphysema, asthma, allergy, and systemic mycosis are among the fungal diseases caused. The present study was conducted to analyze the monthly incidence of airborne fungi, seasonal variation, and influence of meteorological parameters in indoor and outdoor fungi of cowshed at Hesaraghatta village, Bangalore. An aeromycological survey of indoor and outdoor area of cowshed at Hesaraghatta village in Bangalore city was carried out using the Andersen two-stage sampler onto a petri dish containing malt extract agar from January 2011 to December 2011. Altogether, 29 species belonging to 13 genera from indoor and 26 species belonging to 12 genera were recorded from outdoor environment of the cowshed; the dominant fungal species identified were Cladosporium sp., Aspergillus sp., and Alternaria alternata. Seasonal occurrence of fungal spores in both indoor and outdoor of the cowshed revealed that maximum spores were recorded in summer season followed by winter and rainy season.


2021 ◽  
Vol 7 (2) ◽  
pp. 71
Author(s):  
Birgitte Andersen ◽  
Jens C. Frisvad ◽  
Robert R. Dunn ◽  
Ulf Thrane

In many complaint cases regarding bad indoor environments, there is no evidence of visible fungal growth. To determine if the problems are fungi-related, dust sampling is the method of choice among building surveyors. However, there is a need to differentiate between species belonging to a normal, dry indoor environment and species belonging to a damp building envelope. The purposes of this pilot study were to examine which fungal species are present in problem-free Danish homes and to evaluate different detection and identification methods. Analyses showed that the fungal diversity outside was different from the diversity inside and that the composition of fungal species growing indoors was different compared to those found as spores, both indoors and outdoors. Common for most homes were Pseudopithomyceschartarum, Cladosporiumallicinum and Alternaria sect. Infectoriae together with Botrytis spp., Penicilliumdigitatum and Pen. glabrum. The results show that ITS sequencing of dust samples is adequate if supported by thorough building inspections and that food products play as large a role in the composition of the baseline spora as the outdoor air and surrounding vegetation. This pilot study provides a list of baseline fungal species found in Danish homes with a good indoor environment.


2020 ◽  
Vol 3 (3) ◽  
Author(s):  
Matilde Anaya ◽  
Sofia Flavia Borrego Alonso ◽  
Miguel Castro ◽  
Oderlaise Valdés ◽  
Alian Molina

The aim of this work was to analyze the effect of the magnetic field generated by the household appliances on the airborne microbial surrounding these equipment located on indoor environments with particular interest in the environmental fungi. A simultaneous environmental study was carried out in locals of three different geographical places of Havana, Cuba, which have televisions, computers and an electric generator. The air samples were made by a sedimentation method using Malt Extract Agar. The concentration of total aerobic mesophilic as well as fungi and yeasts were determined in rainy and little rainy seasons by applying as factors: exposure time of dishes (5 to 60 min) and distance to the wall (0 and 1 m) at a height of 1 m above the floor. The predominant fungal genera were Cladosporium, Penicillium and Aspergillus. In the dishes that were placed at 0 and 0.5 m from the emitting sources were observed that some bacteria colonies formed inhibition halos, a great diversity of filamentous fungi and an increase in the mycelium pigmentation as well as the pigments excretion. In the rainy season, the highest amounts of fungi were obtained in all samples. In the little rain season the count of the Gram-negative bacilli increased three times the Gram-positive cocci.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1602
Author(s):  
Marlena Piontek ◽  
Katarzyna Łuszczyńska

Infestation of interior walls of buildings with fungal mould is a reason for health concern which is exacerbated in energy-efficient buildings that limit air circulation. Both mycological and mycotoxicological studies are needed to determine the potential health hazards to residents. In this paper, a rare case of the occurrence of Stachybotrys chartarum in an apartment building in the Lubuskie Province in Poland has been described. Isolated as the major constituent of a mixed mycobiota, its specific health relevance still needs to be carefully analyzed as its biochemical aptitude for the synthesis of mycotoxins may be expressed at different levels. Therefore, ecotoxicological tests were performed using two bioindicators: Dugesia tigrina Girard and Daphnia magna Straus. D. tigrina was used for the first time to examine the toxicity of S. chartarum. The ecotoxicological tests showed that the analyzed strain belonged to the third and fourth toxicity classes according to Liebmann’s classification. The strain of S. chartarum was moderately toxic on Potato Dextrose Agar (PDA) as a culture medium (toxicity class III), and slightly toxic on Malt Extract Agar (MEA) (toxicity class IV). Toxicity was additionally tested by instrumental analytical methods (LC-MS/MS). This method allowed for the identification of 13 metabolites (five metabolites reported for Stachybotrys and eight for unspecific metabolites). Spirocyclic drimanes were detected in considerable quantities (ng/g); a higher concentration was observed for stachybotryamide (109,000 on PDA and 62,500 on MEA) and lower for stachybotrylactam (27,100 on PDA and 46,300 on MEA). Both may explain the result observed through the bioindicators. Highly toxic compounds such as satratoxins were not found in the sample. This confirms the applicability of the two bioindicators, which also show mutual compatibility, as suitable tools to assess the toxicity of moulds.


Author(s):  
Laurentiu Predescu ◽  
Daniel Dunea

Optical monitors have proven their versatility into the studies of air quality in the workplace and indoor environments. The current study aimed to perform a screening of the indoor environment regarding the presence of various fractions of particulate matter (PM) and the specific thermal microclimate in a classroom occupied with students in March 2019 (before COVID-19 pandemic) and in March 2021 (during pandemic) at Valahia University Campus, Targoviste, Romania. The objectives were to assess the potential exposure of students and academic personnel to PM and to observe the performances of various sensors and monitors (particle counter, PM monitors, and indoor microclimate sensors). PM1 ranged between 29 and 41 μg m−3 and PM10 ranged between 30 and 42 μg m−3. It was observed that the particles belonged mostly to fine and submicrometric fractions in acceptable thermal environments according to the PPD and PMV indices. The particle counter recorded preponderantly 0.3, 0.5, and 1.0 micron categories. The average acute dose rate was estimated as 6.58 × 10−4 mg/kg-day (CV = 14.3%) for the 20–40 years range. Wearing masks may influence the indoor microclimate and PM levels but additional experiments should be performed at a finer scale.


2000 ◽  
Vol 20 (1) ◽  
pp. 67-73 ◽  
Author(s):  
I. Goh ◽  
J. P. Obbard ◽  
S. Viswanathan ◽  
Y. Huang

2016 ◽  
Vol 82 (8) ◽  
pp. 2479-2493 ◽  
Author(s):  
Anne Mette Madsen ◽  
Søren T. Larsen ◽  
Ismo K. Koponen ◽  
Kirsten I. Kling ◽  
Afnan Barooni ◽  
...  

ABSTRACTIn the indoor environment, people are exposed to several fungal species. Evident dampness is associated with increased respiratory symptoms. To examine the immune responses associated with fungal exposure, mice are often exposed to a single species grown on an agar medium. The aim of this study was to develop an inhalation exposure system to be able to examine responses in mice exposed to mixed fungal species aerosolized from fungus-infested building materials. Indoor airborne fungi were sampled and cultivated on gypsum boards. Aerosols were characterized and compared with aerosols in homes. Aerosols containing 107CFU of fungi/m3air were generated repeatedly from fungus-infested gypsum boards in a mouse exposure chamber. Aerosols containedAspergillus nidulans,Aspergillus niger,Aspergillus ustus,Aspergillus versicolor,Chaetomium globosum,Cladosporiumherbarum,Penicillium brevicompactum,Penicillium camemberti,Penicillium chrysogenum,Penicillium commune,Penicillium glabrum,Penicillium olsonii,Penicillium rugulosum,Stachybotrys chartarum, andWallemia sebi. They were all among the most abundant airborne species identified in 28 homes. Nine species from gypsum boards and 11 species in the homes are associated with water damage. Most fungi were present as single spores, but chains and clusters of different species and fragments were also present. The variation in exposure level during the 60 min of aerosol generation was similar to the variation measured in homes. Through aerosolization of fungi from the indoor environment, cultured on gypsum boards, it was possible to generate realistic aerosols in terms of species composition, concentration, and particle sizes. The inhalation-exposure system can be used to study responses to indoor fungi associated with water damage and the importance of fungal species composition.


2019 ◽  
Vol 1 ◽  
pp. 1-2
Author(s):  
Jiafeng Shi ◽  
Jie Shen ◽  
Zdeněk Stachoň ◽  
Yawei Chen

<p><strong>Abstract.</strong> With the increasing number of large buildings and more frequent indoor activities, indoor location-based service has expanded. Due to the complicated internal passages of large public buildings and the three-dimensional interlacing, it is difficult for users to quickly reach the destination, the demand of indoor paths visualization increases. Isikdag (2013), Zhang Shaoping (2017), Huang Kejia (2018) provided navigation services for users based on path planning algorithm. In terms of indoor path visualization, Nossum (2011) proposed a “Tubes” map design method, which superimposed the channel information of different floors on the same plane by simplifying the indoor corridor and the room. Lorenz et al (2013) focused on map perspective (2D/3D) and landmarks, developed and investigated cartographic methods for effective route guidance in indoor environments. Holscher et al (2007) emphasized using the landmark objects at the important decision points of the route in indoor map design. The existing studies mainly focused on two-dimensional plane to visualize the indoor path, lacking the analysis of three-dimensional connectivity in indoor space, which makes the intuitiveness and interactivity of path visualization greatly compromised. Therefore, it is difficult to satisfy the wayfinding requirements of the indoor multi-layer continuous space. In order to solve this problem, this paper aims to study the characteristics of the indoor environment and propose a path visualization method. The following questions are addressed in this study: 1) What are the key characteristics of the indoor environment compared to the outdoor space? 2) How to visualize the indoor paths to satisfy the users’ wayfinding needs?</p>


Sign in / Sign up

Export Citation Format

Share Document