scholarly journals A Pilot Study on Baseline Fungi and Moisture Indicator Fungi in Danish Homes

2021 ◽  
Vol 7 (2) ◽  
pp. 71
Author(s):  
Birgitte Andersen ◽  
Jens C. Frisvad ◽  
Robert R. Dunn ◽  
Ulf Thrane

In many complaint cases regarding bad indoor environments, there is no evidence of visible fungal growth. To determine if the problems are fungi-related, dust sampling is the method of choice among building surveyors. However, there is a need to differentiate between species belonging to a normal, dry indoor environment and species belonging to a damp building envelope. The purposes of this pilot study were to examine which fungal species are present in problem-free Danish homes and to evaluate different detection and identification methods. Analyses showed that the fungal diversity outside was different from the diversity inside and that the composition of fungal species growing indoors was different compared to those found as spores, both indoors and outdoors. Common for most homes were Pseudopithomyceschartarum, Cladosporiumallicinum and Alternaria sect. Infectoriae together with Botrytis spp., Penicilliumdigitatum and Pen. glabrum. The results show that ITS sequencing of dust samples is adequate if supported by thorough building inspections and that food products play as large a role in the composition of the baseline spora as the outdoor air and surrounding vegetation. This pilot study provides a list of baseline fungal species found in Danish homes with a good indoor environment.

F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1676 ◽  
Author(s):  
Jonathan Sobel ◽  
Luc Henry ◽  
Nicolas Rotman ◽  
Gianpaolo Rando

Next generation sequencing has radically changed research in the life sciences, in both academic and corporate laboratories. The potential impact is tremendous, yet a majority of citizens have little or no understanding of the technological and ethical aspects of this widespread adoption. We designed BeerDeCoded as a pretext to discuss the societal issues related to genomic and metagenomic data with fellow citizens, while advancing scientific knowledge of the most popular beverage of all. In the spirit of citizen science, sample collection and DNA extraction were carried out with the participation of non-scientists in the community laboratory of Hackuarium, a not-for-profit organisation that supports unconventional research and promotes the public understanding of science. The dataset presented herein contains the targeted metagenomic profile of 39 bottled beers from 5 countries, based on internal transcribed spacer (ITS) sequencing of fungal species. A preliminary analysis reveals the presence of a large diversity of wild yeast species in commercial brews. With this project, we demonstrate that coupling simple laboratory procedures that can be carried out in a non-professional environment with state-of-the-art sequencing technologies and targeted metagenomic analyses, can lead to the detection and identification of the microbial content in bottled beer.


2018 ◽  
Vol 28 ◽  
pp. 01032
Author(s):  
Patrycja Rogula-Kopiec ◽  
Józef Pastuszka ◽  
Barbara Mathews ◽  
Kamila Widziewicz

The link between increased morbidity and mortality and increasing concentrations of particulate matter (PM) resulted in great attention being paid to the presence and physicochemical properties of PM in closed rooms, where people spends most of their time. The least recognized group of such indoor environments are small service facilities. The aim of this study was to identify factors which determine the concentration, chemical composition and sources of PM in the air of different service facilities: restaurant kitchen, printing office and beauty salon. The average PM concentration measured in the kitchen was 5-fold (PM4, particle fraction ≥ 4 μm) and 5.3-fold (TSP, total PM) greater than the average concentration of these PM fractions over the same period. During the same measurement period in the printing office and in the beauty salon, the mean PM concentration was 10- and 4-fold (PM4) and 8- and 3-fold (TSP) respectively greater than the mean concentration of these PM fractions in outdoor air. In both facilities the main source of PM macro-components, especially organic carbon, were chemicals, which are normally used in such places - solvents, varnishes, paints, etc. The influence of some metals inflow from the outdoor air into indoor environment of those facilities was also recognized.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1676 ◽  
Author(s):  
Jonathan Sobel ◽  
Luc Henry ◽  
Nicolas Rotman ◽  
Gianpaolo Rando

Next generation sequencing has radically changed research in the life sciences, in both academic and corporate laboratories. The potential impact is tremendous, yet a majority of citizens have little or no understanding of the technological and ethical aspects of this widespread adoption. We designed BeerDeCoded as a pretext to discuss the societal issues related to genomic and metagenomic data with fellow citizens, while advancing scientific knowledge of the most popular beverage of all. In the spirit of citizen science, sample collection and DNA extraction were carried out with the participation of non-scientists in the community laboratory of Hackuarium, a not-for-profit organisation that supports unconventional research and promotes the public understanding of science. The dataset presented herein contains the targeted metagenomic profile of 39 bottled beers from 5 countries, based on internal transcribed spacer (ITS) sequencing of fungal species. A preliminary analysis reveals the presence of a large diversity of wild yeast species in commercial brews. With this project, we demonstrate that coupling simple laboratory procedures that can be carried out in a non-professional environment, with state-of-the-art sequencing technologies and targeted metagenomic analyses, can lead to the detection and identification of the microbial content in bottled beer.


2015 ◽  
Vol 773-774 ◽  
pp. 1116-1120 ◽  
Author(s):  
U.K. Parjo ◽  
Norshuhaila Mohamed Sunar ◽  
Abdul Mutalib Leman ◽  
N.I.A. Ideris ◽  
Paran Gani ◽  
...  

Good indoor environmental quality (IEQ) is desired for a healthy indoor environment. The microbial growth in indoor environments contribute into poor indoor environmental quality can cause various of health problems. Antimicrobial coatings are designed to generate a surface that is easy to clean and can also incorporate active agents, commonly called biocides, which prevent microbial colonization, the subsequent growth and bio-deterioration of the substrate. The aim for this study is to treat indoor environmental quality in buildings by reviewing the possible application of potassium sorbate used in food industry preservatives to be use as indoor antimicrobial. Plasterboard wall was used as a substrate to see the influence of different common wall finishing used such as paints and wallpapers on fungal growth. Potassium sorbate was tested against fungal isolated from affected room M146, FKAAS building. The total fungal counts in affected room was 806 cfu/m3. The ASTM D5590-00 standard was used to evalute fungal growth and potassium sorbate was effective to inhibit the amount of fungal growth on four common types of wall finishing used on plasterboard wall. As a result, the percentage reduction in growth between control and treatment sample were 10% on thin wallpaper, 15% on acrylic paint, 25% on glycerol-based paint and 60% on thick wallpaper.


2021 ◽  
Vol 9 (11) ◽  
pp. 506-520
Author(s):  
Chukwuemeka Chidera Godson ◽  
◽  
Obi Chioma Maureen ◽  
Ochiabuto Ogochukwu Barbara ◽  
Nwachukwu Chinazo Adannia ◽  
...  

Background: Polluted indoor environments pose health challenges such as allergy, infections, and toxicity. Most indoor air pollution comes from hazardous non-biological and biological agents. Due to the nature of the indoor environment of libraries, it is prone to colonization by fungal species. Method: Three sampling sites were used for the study and they include Festus Aghagbo Nwako Library, Main campus Awka, Medical Library, Nnewi Campus and Library Complex, Agulu campus. A total of 100 air samples were analyzed Using the Zefon A6 Single-stage microbial air sampler and Malt Extract Agar supplemented with 0.05mg/ml of chloramphenicol while 16 nasal swabs were collected from the staff present using sterile swab sticks. The mould isolates were identified using the slide culture technique while the yeast isolates were subjected to candida chrom agar and integral yeast plus identification. Antifungal susceptibility was performed using the integral yeast plus system and the agar well diffusion technique. Results: Out of the 100 air samples, a total of 625 fungal isolates were identified of which C.lunata 201 (32.16%) was the most predominant, while P. marneffi, P. expansum, A. restrictus, A. infectoria and R. rubra 1(0.16%) occurred the least. All significant at (p≤0.01). A total of 7 fungal spores were isolated from the 16 nasal swabs and appeared thus in descending order of frequency: P. notatum, 3 (42.85%), A. niger, C. lunata, C. albicans and F. aqueductum, 1(14.3%). Antifungal Susceptibility of the 28 yeast isolates indicated that C. famata, C. laurentii and C. luteolus, were all susceptible to commonly used antifungals in the integral yeast plus system with a 100% susceptibility value, while the mould isolates showed relatively moderate susceptibility to selected antifungals. Conclusion: The organisms isolated are well known to be pathogenic especially to immunocompromised individuals. Their presence in the indoor environment of libraries serves as a risk factor to both the library staff and visitors. Adequate precautionary measures and occasional environmental surveillance need to be inculcated in order to reduce the number of fungi in the indoor environment of these libraries.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jing Wang ◽  
Chaoyun Xu ◽  
Qiming Sun ◽  
Jinrong Xu ◽  
Yunrong Chai ◽  
...  

Abstract Background Microbiome interactions are important determinants for ecosystem functioning, stability, and health. In previous studies, it was often observed that bacteria suppress potentially pathogenic fungal species that are part of the same plant microbiota; however, the underlying microbe-microbe interplay remains mostly elusive. Here, we explored antagonistic interactions of the fungus Fusarium graminearum and bacterium Streptomyces hygroscopicus at the molecular level. Both are ubiquitous members of the healthy wheat microbiota; under dysbiosis, the fungus causes devastating diseases. Results In co-cultures, we found that Streptomyces alters the fungal acetylome leading to substantial induction of fungal autophagy. The bacterium secrets rapamycin to inactivate the target of rapamycin (TOR), which subsequently promotes the degradation of the fungal histone acetyltransferase Gcn5 through the 26S proteasome. Gcn5 negatively regulates fungal autophagy by acetylating the autophagy-related protein Atg8 at the lysine site K13 and blocking cellular relocalization of Atg8. Thus, degradation of Gcn5 triggered by rapamycin was found to reduce Atg8 acetylation, resulting in autophagy induction in F. graminearum. Conclusions Autophagy homeostasis plays an essential role in fungal growth and competition, as well as for virulence. Our work reveals a novel post-translational regulation of autophagy initiated by a bacterial antibiotic. Rapamycin was shown to be a powerful modulator of bacteria–fungi interactions with potential importance in explaining microbial homeostasis in healthy plant microbiomes. The autophagic process provides novel possibilities and targets to biologically control pathogens.


Author(s):  
Laurentiu Predescu ◽  
Daniel Dunea

Optical monitors have proven their versatility into the studies of air quality in the workplace and indoor environments. The current study aimed to perform a screening of the indoor environment regarding the presence of various fractions of particulate matter (PM) and the specific thermal microclimate in a classroom occupied with students in March 2019 (before COVID-19 pandemic) and in March 2021 (during pandemic) at Valahia University Campus, Targoviste, Romania. The objectives were to assess the potential exposure of students and academic personnel to PM and to observe the performances of various sensors and monitors (particle counter, PM monitors, and indoor microclimate sensors). PM1 ranged between 29 and 41 μg m−3 and PM10 ranged between 30 and 42 μg m−3. It was observed that the particles belonged mostly to fine and submicrometric fractions in acceptable thermal environments according to the PPD and PMV indices. The particle counter recorded preponderantly 0.3, 0.5, and 1.0 micron categories. The average acute dose rate was estimated as 6.58 × 10−4 mg/kg-day (CV = 14.3%) for the 20–40 years range. Wearing masks may influence the indoor microclimate and PM levels but additional experiments should be performed at a finer scale.


2020 ◽  
pp. 1420326X2097546
Author(s):  
Richard A Sharpe ◽  
Andrew J Williams ◽  
Ben Simpson ◽  
Gemma Finnegan ◽  
Tim Jones

Fuel poverty affects around 34% of European homes, representing a considerable burden to society and healthcare systems. This pilot study assesses the impact of an intervention to install a new first time central heating system in order to reduce fuel poverty on household satisfaction with indoor temperatures/environment, ability to pay bills and mental well-being. In Cornwall, 183 households received the intervention and a further 374 went onto a waiting list control. A post-intervention postal questionnaires and follow-up phone calls were undertaken ( n = 557) to collect data on household demographics, resident satisfaction with indoor environment, finances and mental well-being (using the Short Warwick-Edinburgh Mental Wellbeing scale). We compared responses between the waiting list control and intervention group to assess the effectiveness of the intervention. A total of 31% of participants responded, 83 from the waiting list control and 71 from the intervention group. The intervention group reported improvements in the indoor environment, finances and mental well-being. However, these benefits were not expressed by all participants, which may result from diverse resident behaviours, lifestyles and housing characteristics. Future policies need to consider whole house approaches alongside resident training and other behaviour change techniques that can account for complex interactions between behaviours and the built environment.


2020 ◽  
Vol 21 (22) ◽  
pp. 8681
Author(s):  
Nicolò Orsoni ◽  
Francesca Degola ◽  
Luca Nerva ◽  
Franco Bisceglie ◽  
Giorgio Spadola ◽  
...  

As key players in biotic stress response of plants, jasmonic acid (JA) and its derivatives cover a specific and prominent role in pathogens-mediated signaling and hence are promising candidates for a sustainable management of phytopathogenic fungi. Recently, JA directed antimicrobial effects on plant pathogens has been suggested, supporting the theory of oxylipins as double gamers in plant-pathogen interaction. Based on these premises, six derivatives (dihydrojasmone and cis-jasmone, two thiosemicarbazonic derivatives and their corresponding complexes with copper) have been evaluated against 13 fungal species affecting various economically important herbaceous and woody crops, such as cereals, grapes and horticultural crops: Phaeoacremonium minimum, Neofusicoccum parvum, Phaeomoniella chlamydospora, Fomitiporia mediterranea, Fusarium poae, F. culmorum, F. graminearum, F. oxysporum f. sp. lactucae,F. sporotrichioides, Aspergillus flavus, Rhizoctonia solani,Sclerotinia spp. and Verticillium dahliae. The biological activity of these compounds was assessed in terms of growth inhibition and, for the two mycotoxigenic species A. flavus and F. sporotrichioides, also in terms of toxin containment. As expected, the inhibitory effect of molecules greatly varied amongst both genera and species; cis-jasmone thiosemicarbazone in particular has shown the wider range of effectiveness. However, our results show that thiosemicarbazones derivatives are more effective than the parent ketones in limiting fungal growth and mycotoxins production, supporting possible applications for the control of pathogenic fungi.


Sign in / Sign up

Export Citation Format

Share Document