Plant-fungal mutualism as a strategy for the bioremediation of hydrocarbon polluted soils

2021 ◽  
Author(s):  
◽  
Olajide Muritala Keshinro

Inasmuch as coal remains the linchpin for the generation of electricity and liquid petroleum products in South Africa, hydrocarbon waste and coal discard will continue to pose a threat to the environment. Therefore, the onus is on the associated industries to develop and implement efficient and sustainable strategies to mitigate the negative impacts of energy generating activities on the environment. Most conventional efforts in this regard, although successful for soil repair and the initiation of vegetation, have been deemed unsustainable. In an effort to find a sustainable remediation strategy a novel technology termed “FungCoal” was conceptualized and patented as a strategy for the rehabilitation of open cast coal mines, carbonaceous-rich spoils and coal wastes. This biotechnology, which exploits plant-fungal mutualism to achieve effective biodegradation of coal on discard dumps and the breakdown of the carbonaceous component in spoils, promotes revegetation to facilitate rehabilitation of mining-disturbed land. However, one limiting factor of the FungCoal bioprocess is that it requires oxidized weathered coal, a highly complex and variable resource for use as a co-substrate, for growth and proliferation of the coal degrading microorganisms. To fully exploit the potential of plant-fungal mutualism and its interaction for use in the remediation of coal contaminated soils, this study investigated the proposed relationship between plant roots, root exudate and the coal degrading fungus “Aspergillus sp.” (previously Neosartorya fischeri) strain 84 in more detail, in an effort to gain further insight into the mechanisms underpinning plant-fungal mutualism as a strategy for re-vegetation of coal discard dumps and the rehabilitation of hydrocarbon-contaminated soil using the FungCoal approach. A pot-on-beaker (PoB) method was developed for the easy cultivation and collection of extracellular polymeric substance (EPS)-containing exudates from Zea mays L. (maize) and Abelmuschus esculentus (okra). Characterisation of the EPS material from these exudates was carried out using a combination of physicochemical and biochemical methods. The results from analysis of phenolics and indoles showed that exudates contain some form of indoles and phenolic compounds, although in little proportions, which may fulfil a signalling function, responsible for attracting soil microorganisms into the rhizosphere. Spectroscopic analysis of the exudates using FT-IR revealed vibrations corresponding to functional groups of alkanes, alkenes, alkynes, and carboxylic acids. These compounds likely provide an easily accessible source of carbon to soil microorganisms and are also a better alternative to the poly-aromatics which are an inherent component locked-up in the supposed recalcitrant coal material. The results from biochemical analyses also revealed the presence of carbohydrate, proteins, lipids, and low amounts of α-amino-nitrogen in the EPS of maize and okra. These components of EPS are all essential for the stimulation of enzymatic activities in soil microorganisms and, which may in turn aid biodegradation. The action of the root EPS from maize was further tested on three coal-degrading fungal isolates identified as Aspergillus strain ECCN 84, Aspergillus strain ECCN 225 and Penicillium strain ECCN 243 for manganese peroxidase (MnP) and laccase (LAC) activities. The results revealed that the Aspergillus species, strains ECCN 84 and ECCN 225, showed with or without EPS, observable black halos surrounding each of the colonies after 7d incubation indicative of positive MnP activity, while no activity was observed for the Penicillium sp. strain ECCN 243. Analysis for LAC revealed little or no activity in any of the coal degrading fungi following addition of pulverized coal to the growth medium. Interestingly, the addition of EPS-containing exudate to the coal-containing medium resulted in increased LAC activity for all fungal isolates. This finding affirmed the positive contribution of EPS to extracellular LAC activity, purported as an important enzyme in the coal biodegradation process. Finally, the impact of plant-derived exudate on the colonisation and biodegradation of coal was investigated in situ using rhizoboxes, to simulate a coal environment, and was carried out for 16 weeks. Microscopic examination of coal samples after termination of the experiment showed fungal proliferation and attachment to coal particles. All of the rhizoboxes that contained plants had higher medium pH and EC, and the concentration of phenolics, indoles and humic acids was greater than that of control treatments. These observations indicated better rhizosphere colonisation, substrate biodegradation and humification. Therefore, root exudate appears to play a significant role in coordination of soil microorganisms within the rhizosphere and likely serves both as a scaffold for rhizospheric interactions by providing microorganisms with accessible carbon and as a likely ‘trigger’ for induction of coal-degrading enzymes such as fungal LAC for mobilisation of recalcitrant carbon. This study has shown that EPS exuded from roots of Zea mays together with coal degrading fungus Aspergillus strain ECCN 84 can alkalinise the coal substrate and facilitate introduction of oxygen, possibly as a result of increased laccase activity, and increase availability of nutrients (as indicated by higher EC) in a coal-polluted rhizosphere, to provide plants and their associated mycorrhizae and presumably other beneficial microorganisms a more mesic environment for sustained phytoremediation with enhanced rehabilitation potential. In conclusion, this study confirms the positive role of root exudate in mediating a mutualistic rehabilitation strategy involving plants and fungi such as the FungCoal bioprocess.

2015 ◽  
Vol 3 (3) ◽  
Author(s):  
Imam Wibowo ◽  
Santi Putri Ananda

Purpose-To study the impact of the service quality and trust on customers loyalty of PT.Bank Mandiri,Tbk; Kelapa Gading Barat Branch. To improve the customers loyalty there are several factors that can influence them, such as service quality and trust. Methodology/approach-The research population was all customers PT.Bank Mandiri,Tbk;Kelapa Gading Barat Branch.According to the homogeneous population and based on the Gay and Diehl Theory, the samples taken were 50 people. Variables in this investigations consisted of: a).Independent Variables (exogenous): Service Quality (X1) and Trust (X2). b).The dependent variable (endogenous) Customers Loyalty (Y). Analysis tool being used is multiple linear regression which previously conducted validity and realiability. Findings-The result of investigations that service quality and trust simultaneously have a very strong contribution of 75,5% to the customers loyalty, and partially showed that service quality has significant and positive contribution to the customers loyalty of 64,8%. Partially, the trust variable has significant and positive contribution which amounted to 55,9% to the customers loyalty.


Metabolites ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 84
Author(s):  
Laura Rieusset ◽  
Marjolaine Rey ◽  
Florence Gerin ◽  
Florence Wisniewski-Dyé ◽  
Claire Prigent-Combaret ◽  
...  

Roots contain a wide variety of secondary metabolites. Some of them are exudated in the rhizosphere, where they are able to attract and/or control a large diversity of microbial species. In return, the rhizomicrobiota can promote plant health and development. Some rhizobacteria belonging to the Pseudomonas genus are known to produce a wide diversity of secondary metabolites that can exert a biological activity on the host plant and on other soil microorganisms. Nevertheless, the impact of the host plant on the production of bioactive metabolites by Pseudomonas is still poorly understood. To characterize the impact of plants on the secondary metabolism of Pseudomonas, a cross-metabolomic approach has been developed. Five different fluorescent Pseudomonas strains were thus cultivated in the presence of a low concentration of wheat root extracts recovered from three wheat genotypes. Analysis of our metabolomic workflow revealed that the production of several Pseudomonas secondary metabolites was significantly modulated when bacteria were cultivated with root extracts, including metabolites involved in plant-beneficial properties.


Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 137
Author(s):  
Luis F. Castro ◽  
Abigail D. Affonso ◽  
Renata M. Lehman

Specialty malts are commonly used in brewing to provide flavor, aroma, and color to wort and beer. The use of specialty malts contributes to the variety of beer products; therefore, it is important to understand their effect on the characteristics of wort and beer. This study investigates the impact of various specialty malts on wort and beer properties. A control beer was prepared with 100% base malt, and four beer treatments were prepared with the addition of kilned, roasted, and caramel specialty malts. For each treatment, 20% of the base malt was substituted with the various specialty malts when preparing the wort. The fermentable sugars and free amino nitrogen (FAN) content for each wort were analyzed. Alcohol by volume (ABV), international bitterness units (IBU), diacetyl, and polyphenol content of each prepared beers were subsequently analyzed. Results showed that wort prepared with the addition of roasted and caramel malts contained a lower concentration of fermentable sugars and FAN than wort prepared with the base and kilned malts. Beers prepared with the addition of roasted and caramel malts exhibited the lowest levels of ABV, as well as the lowest levels of diacetyl. These beers also exhibited higher levels of total phenolic compounds compared to the other beer samples. No change was observed in IBU levels as a result of brewing with the different specialty malts. This study illustrates how the use of specialty malts impacts wort and beer properties, providing useful information to aid in the production of quality beer products.


2021 ◽  
Vol 11 (14) ◽  
pp. 6451
Author(s):  
Christian E. Hernández-Mendoza ◽  
Pamela García Ramírez ◽  
Omar Chávez Alegría

Soil contamination by different hydrocarbons has rapidly expanded worldwide, surpassing the self-purification capacity of soils and increasing the number of contaminated sites. Although much effort has been devoted to study the effects of diesel contamination on the geotechnical properties of soil, there is still limited available information about it. Moreover, there is no available information about the maximum diesel retention that soil can have and its effect on the geotechnical behavior of the soil. Thus, in this paper, we determined the maximum diesel retention by an unsaturated clayey soil and evaluated the impact of diesel contamination on its geotechnical properties. The results showed that the soil could only retain 12.6% of the added diesel and the excess was expulsed. At such a diesel concentration, the saturation rate of the soil was lower than 80%. Diesel contamination increased the plasticity and the internal friction angle of the soil, while its cohesion was considerably decreased. It should be noted that the matric suction of contaminated soil was lower than the one obtained for natural soil. However, its osmotic suction was considerably higher. This indicates that osmotic suction must be considered to evaluate the shear strength of contaminated soils.


2001 ◽  
Vol 43 (2) ◽  
pp. 291-295 ◽  
Author(s):  
J. Vouillamoz ◽  
M. W. Milke

The effect of compost on phytoremediation of diesel-contaminated soils was investigated using 130 small (200 g) containers in two screening tests. The experiments were conducted in a controlled environment using ryegrass from seed. Containers were destructively sampled at various times and analyzed for plant mass and total petroleum hydrocarbons. The results indicate that the presence of diesel reduces grass growth, and that compost helps reduced the impact of diesel on grass growth. The addition of compost helps increase diesel loss from the soils both with and without grass, though the addition of grass leads to lower diesel levels compared with controls. A second set of experiments indicates that the compost helps in phytoremediation of diesel-contaminated soil independent of the dilution effect that compost addition has. The results indicate that the compost addition allowed diesel loss down to 200 mg TPH/kg even though the compost would be expected to hold the diesel more tightly in the soil/compost mixture. The simplicity of the screening tests led to difficulties in controlling moisture content and germination rates. The conclusion of the research is that the tilling of compost into soils combined with grass seeding appears to be a valuable option for treating petroleum-contaminated soils.


Soil Research ◽  
2011 ◽  
Vol 49 (4) ◽  
pp. 287 ◽  
Author(s):  
V. Gonzalez-Quiñones ◽  
E. A. Stockdale ◽  
N. C. Banning ◽  
F. C. Hoyle ◽  
Y. Sawada ◽  
...  

Since 1970, measurement of the soil microbial biomass (SMB) has been widely adopted as a relatively simple means of assessing the impact of environmental and anthropogenic change on soil microorganisms. The SMB is living and dynamic, and its activity is responsible for the regulation of organic matter transformations and associated energy and nutrient cycling in soil. At a gross level, an increase in SMB is considered beneficial, while a decline in SMB may be considered detrimental if this leads to a decline in biological function. However, absolute SMB values are more difficult to interpret. Target or reference values of SMB are needed for soil quality assessments and to allow ameliorative action to be taken at an appropriate time. However, critical values have not yet been successfully identified for SMB. This paper provides a conceptual framework which outlines how SMB values could be interpreted and measured, with examples provided within an Australian context.


2019 ◽  
Vol 8 (1) ◽  
pp. 82-86
Author(s):  
Anastasia Olegovna Oznobihina

The aim of the study is to conduct biological testing at the initial stages of plant objects viability in the model conditions of heavy metal pollution. The paper presents the results of laboratory experiments to assess the impact of different concentrations of heavy metal salts on the viability of yellow melilot and great trefoil seeds. In the course of the conducted experimental studies the author has been established a direct dependence of the decrease in the indices of germination energy and laboratory germination of seeds with an increase in the concentration of phytotoxicant salts, determined the critical (threshold) concentration of the studied elements and the metal content, in which the processes of growth and development of seeds remain. The concentration of 0,01% cadmium, zinc, lead and copper was optimal for germination of melilot seeds, where germination was equal to 80%, 74%, 69% and 64%, respectively. For great trefoil seeds, high germination rates were noted in case of 0,01% contamination with lead, zinc, cadmium and copper - 82%, 80%, 77% and 76%, respectively, and in 0,1% salt solution of lead, copper and zinc there were recorded 75%, 74% and 72% of seedlings. Zinc in the concentration of 0,01% at the initial stages of germination of phytomeliorant seeds stimulated germination energy. The tendency of resistance to pollution by lead, zinc and copper was observed at sprouts of a great trefoil, and to pollution by cadmium the greatest resistance was shown by a melilot yellow. Defining the limits of the leguminous plant seeds germination in the presence of a toxic agent will allow research and development in respect of biological restoration of contaminated soils and can be used in technologically disturbed lands.


Author(s):  
D Kosma ◽  
J Long ◽  
S Ebb

Yellow foxtail (Setaria glauca L. P. Beauv) growing on a cadmium-contaminated site was sampled to determine the extent of cadmium bioaccumulation in aerial tissues and the impact of cadmium on growth and development. Water-extractable Cd concentrations in the soil ranged from 5.0 to 18.0 mg L-1. Aerial tissues contained elevated concentrations of Cd (16-48 μg g-1 DW), with mean concentration ratios of >3.0. Since foxtail frequently colonizes disturbed sites, the bioaccumulation of Cd in aerial tissues of foxtail suggests that wildlife feeding upon this plant species could be exposed to elevated Cd levels. A significant negative correlation (r2=0.98) was observed between water-extractable Cd in the soil and seed head length in foxtail, indicative of an adverse effect of Cd on reproductive development. This correlation further suggests seed head length as a biomarker for soluble Cd in contaminated soils. KEYWORDS: Cadmium, bioaccumulation, biomarker, phytotoxicity


Author(s):  
M. L. Bubarai U. Bapetel ◽  
A. Musa Mala

At the SHUATS Department of Soil Science and Agricultural Chemistry Research Farm, an experiment was conducted with the goal of determining the impact of application of macro and micronutrients, on soil health nutrients concentration and uptake by maize (Zea mays L). The experiment was put up based on this over a two-year period, beginning with the 2017 and 2018 cropping periods. Crbd was used as the experimental technique and it was replicated thrice with the following treatments combinations, NPK @ 50 and 100kgha -1, while for the micronutrients (Boron, Zinc and Copper) three levels of combination were used 0.3, 6 and 9kgha-1. The research project's findings showed all the determinants of soil health like soil reaction organic matter among others are at levels suitable for nutrients actions and plant growth, while plant parameters like maize cob diameter, dry matter, and nutrients concentrations in maize tissues have greatly improved. NPK @100kgha-1, Copper, Zinc, and Boron @ 9kgha-1 were the best treatment combinations with the best results. The above combinations of treatments will be suitable for the soils of that location based on the results of these studies.


Sign in / Sign up

Export Citation Format

Share Document