scholarly journals New approaches to the impact on the pathogenetic links of sepsis

2020 ◽  
pp. 240-246
Author(s):  
E. A. Nikitin ◽  
K. V. Kleymenov ◽  
D. D. Batienco ◽  
D. A. Akulenko ◽  
P. V. Seliverstov ◽  
...  

Sepsis is a systemic pathological reaction that arise because of a severe infection. Now, sepsis is considered as one of the most serious diseases and materially expensive nosology’s. For instance, out of 100% of cases of sepsis, only 40% survive. Thus, there is a high mortality rate and a wide prevalence (up to 300 thousand patients with sepsis are registered in Europe), which makes it possible to identify serious problems and the need to improve the clinical approach to the management strategy and tactics of such patients. The number of cases of detection and registration of sepsis has been expanding expansively since the thirties of the last century, and continues to grow dynamically, which obviously requires an improvement in the pathognomonic approach to therapy. The main reasons for the growth of septic conditions are the increasing use of invasive methods in medical practice, the pandemic of diabetes mellitus, the use of cytostatic and immunosuppressants, as well as the increasing number of antibiotic-resistant strains of pathogenic and conditionally pathogenic bacteria, total disruption of mucosal microbiocenoses, unreasonable use of probiotics with production strains containing foci of pathogenicity in patients with primary or secondary immunodeficiencies. Now, the main etiopathogenetic therapy of sepsis remains drugs aimed at the destruction of pathogenic microorganisms. However, based on the pathogenesis of the septic state, it seems effective to search for drugs with new points of application to individual pathogenesis links of the systemic inflammatory response. Today, studies aimed at establishing the effectiveness of influence on any individual links in the pathogenesis of sepsis - inflammatory mediators, have not yet yielded clear results.

2019 ◽  
Vol 366 (8) ◽  
Author(s):  
Sophie Van Hamelsveld ◽  
Muyiwa E Adewale ◽  
Brigitta Kurenbach ◽  
William Godsoe ◽  
Jon S Harding ◽  
...  

Abstract Baseline studies are needed to identify environmental reservoirs of non-pathogenic but associating microbiota or pathogenic bacteria that are resistant to antibiotics and to inform safe use of freshwater ecosystems in urban and agricultural settings. Mesophilic bacteria and Escherichia coli were quantified and isolated from water and sediments of two rivers, one in an urban and one in an agricultural area near Christchurch, New Zealand. Resistance of E. coli to one or more of nine different antibiotics was determined. Additionally, selected strains were tested for conjugative transfer of resistances. Despite having similar concentrations of mesophilic bacteria and E. coli, the rivers differed in numbers of antibiotic-resistant E. coli isolates. Fully antibiotic-susceptible and -resistant strains coexist in the two freshwater ecosystems. This study was the first phase of antibiotic resistance profiling in an urban setting and an intensifying dairy agroecosystem. Antibiotic-resistant E. coli may pose different ingestion and contact risks than do susceptible E. coli. This difference cannot be seen in population counts alone. This is an important finding for human health assessments of freshwater systems, particularly where recreational uses occur downstream.


The Analyst ◽  
2020 ◽  
Vol 145 (22) ◽  
pp. 7320-7329
Author(s):  
Muhammad Asif ◽  
Fazli Rabbi Awan ◽  
Qaiser Mahmood Khan ◽  
Bongkot Ngamsom ◽  
Nicole Pamme

We investigate paper microfluidic devices for detection of pathogenic bacteria and their sensitivity towards β-lactamase and Extended Spectrum Beta Lactamases (ESBLs) in milk samples to enable appropriate prescription of antibiotics for mastitis.


Author(s):  
ALI MOHAMMED ABDULLAH BAWAZIR ◽  
PALAKSHA ◽  
MANJULA SHANTARAM ◽  
MANJULA SHANTARAM

This review conceptualizes about the actinomycetes and its contribution to human health by playing a key role as bioactive secondary metabolites, such as enzymes, antibiotics and pigments, leading to their diverse applications and use in various industries. These searches have been uncommonly successful, and around 66% of naturally happening antibiotics, including many medically important, have been isolated from actinomycetes. The speedy occurrence of antimicrobial resistance among pathogens has led to a renewed interest to search for novel antimicrobial agents, but these antibiotics are not enough for the treatment of all diseases because there is a berserk requirement for a novel actinomycetes to combat against the antibiotic-resistant strains of pathogenic microorganisms, which are quickly expanding bit by bit. Actinomycetes are the important providers to the pharmaceutical and other industries and are well known for their capacity to produce secondary metabolites many of which are active against pathogenic microorganisms.


Fine Focus ◽  
2018 ◽  
Vol 4 (2) ◽  
pp. 189-201
Author(s):  
Cody A. Postich ◽  
Kevin B. Kiser

Healthcare institutions have seen an increase in infections caused by antibiotic-resistant ESKAPE pathogens. Current antibiotics have become less potent against pathogenic bacteria due to their overuse and misuse. In recent years, scientists have revisited local environments in search of novel antibioticproducing microbes to address the increasing threat of resistance. One species of bacteria was isolated from anthill sediment in coastal North Carolina. This environment was selected for its abiotic properties, including organic substrates, moisture saturation and aeration. Anthill isolate A2, inhibited various Grampositive and negative ESKAPE pathogens or their surrogates, including Staphylococcus aureus, Klebsiella pneumoniae, and Acinetobacter calcoaceticus, in crossstreak tests. 16S rRNA sequencing identified isolate A2 as Pseudomonas koreensis. Mass spectrometry and small-molecule analysis performed on ethyl-acetate extracts of culture supernatant were used to evaluate bioactivity and identify the probable structure of one potential antimicrobial compound, monolauryl maleate. Discovery of novel antimicrobial compounds to replace overused antibiotics may help reduce the impact of antibiotic-resistant pathogens.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 711
Author(s):  
Olga Urbanek ◽  
Alicja Wysocka ◽  
Paweł Nakielski ◽  
Filippo Pierini ◽  
Elżbieta Jagielska ◽  
...  

The spread of antimicrobial resistance requires the development of novel strategies to combat superbugs. Bacteriolytic enzymes (enzybiotics) that selectively eliminate pathogenic bacteria, including resistant strains and biofilms, are attractive alternatives to antibiotics, also as a component of a new generation of antimicrobial wound dressings. AuresinePlus is a novel, engineered enzybiotic effective against Staphylococcus aureus—one of the most common pathogenic bacteria, found in infected wounds with a very high prevalence of antibiotic resistance. We took advantage of its potent lytic activity, selectivity, and safety to prepare a set of biodegradable PLGA/chitosan fibers generated by electrospinning. Our aim was to produce antimicrobial nonwovens to deliver enzybiotics directly to the infected wound and better control its release and activity. Three different methods of enzyme immobilization were tested: physical adsorption on the previously hydrolyzed surface, and covalent bonding formation using N-hydroxysuccinimide/N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide (NHS/EDC) or glutaraldehyde (GA). The supramolecular structure and functional properties analysis revealed that the selected methods resulted in significant development of nanofibers surface topography resulting in an efficient enzybiotic attachment. Both physically adsorbed and covalently bound enzymes (by NHS/EDC method) exhibited prominent antibacterial activity. Here, we present the extensive comparison between methods for the effective attachment of the enzybiotic to the electrospun nonwovens to generate biomaterials effective against antibiotic-resistant strains. Our intention was to present a comprehensive proof-of-concept study for future antimicrobial wound dressing development.


2019 ◽  
Author(s):  
Soumya Jaya Divakaran ◽  
Jamiema Sara Philip ◽  
Padma Chereddy ◽  
Sai Ravi Chandra Nori ◽  
Akshay Jaya Ganesh ◽  
...  

AbstractExtreme flooding is one of the major risk factors for human health, and it can significantly influence the microbial communities and enhance the mobility of infectious disease agents within its affected areas. The flood crisis in 2018 was one of the severe natural calamities recorded in the southern state of India (Kerala) that significantly affected its economy and ecological habitat. We utilized a combination of shotgun metagenomics and bioinformatics approaches for understanding microbiome disruption and the dissemination of pathogenic and antibiotic-resistant bacteria on flooded sites. Here we report, altered bacterial profiles at the flooded sites having 77 significantly different bacterial genera in comparison with non-flooded mangrove settings. The flooded regions were heavily contaminated with faecal contamination indicators such asEscherichia coliandEnterococcus faecalisand resistant strains ofPseudomonas aeruginosa, SalmonellaTyphi/Typhimurium, Klebsiella pneumoniae, Vibrio choleraeandStaphylococcus aureus. The resistome of the flooded sites contains 103 resistant genes, of which 38% are encoded in plasmids, where most of them are associated with pathogens. The presence of 6 pathogenic bacteria and its susceptibility to multiple antibiotics including ampicillin, chloramphenicol, kanamycin and tetracycline hydrochloride were confirmed in flooded and post-flooded sites using traditional culture-based analysis followed by 16S rRNA sequencing. Our results reveal altered bacterial profile following a devastating flood event with elevated levels of both faecal contamination indicators and resistant strains of pathogenic bacteria. The circulation of raw sewage from waste treatment settings and urban area might facilitate the spreading of pathogenic bacteria and resistant genes.


2021 ◽  
Vol 20 (4A) ◽  
pp. 199-209
Author(s):  
Nguyen Kim Hanh ◽  
Nguyen Trinh Duc Hieu ◽  
Nguyen Minh Hieu ◽  
Vo Hai Thi ◽  
Pham Thi Mien ◽  
...  

To assess the impact of antibiotic use in aquaculture in Nha Trang bay, we conducted this study with the aim of assessing antibiotic resistance of opportunistic pathogenic bacteria isolated from water and sediment around shrimp/fish cages in the Nha Trang bay. 109 strains of Vibrio, Salmonella-Shigella and Aeromonas groups were isolated in the surrounding environment of farming areas in Dam Bay and Hon Mieu. Antimicrobial resistance test of these 109 strains showed that in the water environment in Dam Bay, TET (96.6%) and NIT (92.5%) were the two antibiotics with the highest rates of resistant bacteria while no bacteria were resistant to RIF. All 5 types of antibiotics had a statistically insignificant percentage of antibiotic-resistant bacteria in water samples at Hon Mieu, ranging from 33.3% to 68.9%. Also in the water environment, the rate of antibiotic-resistant bacteria in Dam Bay was not influenced by the distance to the cages (42.5–66.6%). Meanwhile, in Hon Mieu, the highest rate of resistant bacteria was observed at the distance of 200 m (100%) away from cages and the lowest rate at the distance of 100 m (20%). In the sediment environment around the cages, both the Dam Bay and Hon Mieu farming areas showed the highest rates of antibiotic-resistant bacteria against TET, NIF and RIF had the lowest rate of resistant bacteria. Among the total of 109 strains tested for antibiotic resistance, 2 strains labeled TCBS_HM200 m and SS_HM200 m were found to be resistant to all 5 tested antibiotics. These two strains were respectively identified as Vibrio harveyi and Oceanimonas sp.


Molecules ◽  
2019 ◽  
Vol 24 (10) ◽  
pp. 1879 ◽  
Author(s):  
Alexander V. Grishin ◽  
Natalia V. Lavrova ◽  
Alexander M. Lyashchuk ◽  
Natalia V. Strukova ◽  
Maria S. Generalova ◽  
...  

The increasing prevalence of antibiotic-resistant strains of pathogenic bacteria is a major healthcare problem. Antibacterial lysins are enzymes that cleave the peptidoglycan of the bacterial cell wall. These proteins hold potential as a supplement or an alternative to traditional antibiotics since they are active against antibiotic resistant strains. However, antibacterial lysins are rapidly eliminated from the systemic circulation, which limits their application. Dimerization of an anti-pneumococcal lysin Cpl-1 has been demonstrated to decrease the clearance rate of this protein in mice. In the present work, we constructed a dimer of an anti-staphylococcal lysin lysostaphin by fusing it with an anti-parallel α-helical dimerization domain. Lysostaphin dimer had a more favorable pharmacokinetic profile with increased terminal half-life and area under the curve (AUC) values compared to monomeric lysostaphin. However, the staphylolytic activity of dimerized lysostaphin was decreased. This decrease in activity was likely caused by the dimerization; since the catalytic efficacy of lysostaphin dimer towards pentaglycine peptide was unaltered. Our results demonstrate that, although dimerization is indeed beneficial for the pharmacokinetics of antibacterial lysins, this approach might not be suitable for all lysins, as it can negatively affect the lysin activity.


Author(s):  
Pierre Ramondou ◽  
Jeanne Hersant ◽  
Olivier Fouquet ◽  
Wendsendate Yves Sempore ◽  
Pierre Abraham ◽  
...  

Background: Galvanic current-induced vasodilation (CIV) is impaired in patients under low-dose aspirin (ASA; ≤ 500 mg/day), but potential covariates and the impact of the time since the last ASA intake are unknown. Objectives: We used tissue viability imaging (TiVi) in patients at risk of cardiovascular disease and examined its association with self-reported treatments. Patients/Methods: We recorded the age, gender, height, weight, smoking status, and use of 14 different drug categories in 822 patients either with known peripheral artery disease or at risk thereof. The difference between TiVi arbitrary units (TAUs) where stimulation was applied and an adjacent skin area was recorded, as well as the time since the last ASA intake. Step-by-step regression analysis was used to determine the factors that affect CIV amplitude. Results and Conclusions: CIV was 28.2 ± 22.9 vs. 14.6 ± 18.0 TAUs (p < 0.001) in patients treated with ASA (n = 287) and not treated with ASA (n = 535), respectively. The main determinants of CIV amplitude, by order of importance, were: aspirin intake, diabetes mellitus, age, and male sex. In ASA-treated patients, the main determinants were diabetes mellitus, time since the last ASA intake, male gender, and age. Non-invasive determination of the physiological effects of low-dose ASA is feasible in routine clinical practice. It could be a clinical approach to provide objective evidence of ASA intake, and potentially could be used to test adherence to treatment in ASA-treated patients.


Sign in / Sign up

Export Citation Format

Share Document