scholarly journals Acrylamide moiety, a Valuable Fragment in Medicinal Chemistry: Insight into Synthetic Methodologies, Chemical Reactivity and Spectrum of Biological Activities of Acrylamide Derivatives

2018 ◽  
Vol 0 (0) ◽  
pp. 0-0 ◽  
Author(s):  
Hossam Elgiushy ◽  
Sherif Hammad ◽  
Ashraf Hassan ◽  
Nageh Aboutaleb ◽  
khaled Abouzid
Author(s):  
Eduardo Bustos Mass ◽  
Gilmar Vieira Duarte ◽  
Dennis Russowsky

: Quinazoline and/or chalcones derivatives are important targets in several areas of chemical sciences, mainly, in the medicinal chemistry and pharmaceutical research. The purpose of this review is to systematize the information available in the literature, including patents, regarding the benefits exerted by the combination of these two pharmacophores into single molecules. These hybrid compounds can exhibit different biological activities, causing a synergistic or a new effect, compared to the individuals. The variability of biological activities includes anticancer, anti-Alzheimer, antiviral and antimicrobial activities, among others. Additionally, synthetic methodologies to prepare the different molecular architectures were discussed based on their similarities. The increasing number of publications indicates the importance of molecular hybridization on the field of drug discovery.


2014 ◽  
Vol 21 (11) ◽  
pp. 1336-1350 ◽  
Author(s):  
C. Wang ◽  
H. Gao ◽  
J. Dong ◽  
F. Wang ◽  
P. Li ◽  
...  

2019 ◽  
Vol 26 (23) ◽  
pp. 4403-4434 ◽  
Author(s):  
Susimaire Pedersoli Mantoani ◽  
Peterson de Andrade ◽  
Talita Perez Cantuaria Chierrito ◽  
Andreza Silva Figueredo ◽  
Ivone Carvalho

Neglected Diseases (NDs) affect million of people, especially the poorest population around the world. Several efforts to an effective treatment have proved insufficient at the moment. In this context, triazole derivatives have shown great relevance in medicinal chemistry due to a wide range of biological activities. This review aims to describe some of the most relevant and recent research focused on 1,2,3- and 1,2,4-triazolebased molecules targeting four expressive NDs: Chagas disease, Malaria, Tuberculosis and Leishmaniasis.


2020 ◽  
Vol 20 (5) ◽  
pp. 342-368 ◽  
Author(s):  
Juliana de Oliveira Carneiro Brum ◽  
Tanos Celmar Costa França ◽  
Steven R. LaPlante ◽  
José Daniel Figueroa Villar

Hydrazones and their derivatives are very important compounds in medicinal chemistry due to their reported biological activity for the treatment of several diseases, like Alzheimer’s, cancer, inflammation, and leishmaniasis. However, most of the investigations on hydrazones available in literature today are directed to the synthesis of these molecules with little discussion available on their biological activities. With the purpose of bringing lights into this issue, we performed a revision of the literature and wrote this review based on some of the most current research reports of hydrazones and derivatives, making it clear that the synthesis of these molecules can lead to new drug prototypes. Our goal is to encourage more studies focused on the synthesis and evaluation of new hydrazones, as a contribution to the development of potential new drugs for the treatment of various diseases.


2020 ◽  
Vol 17 (8) ◽  
pp. 922-945
Author(s):  
Andrés-Felipe Villamizar-Mogotocoro ◽  
Andrés-Felipe León-Rojas ◽  
Juan-Manuel Urbina-González

The five-membered oxacyclic system of furan-2(5H)-ones, commonly named as γ- butenolides or appropriately as Δα,β-butenolides, is of high interest since many studies have proven its bioactivity. During the past few years, Δα,β-butenolides have been important synthetic targets, with several reports of new procedures for their construction. A short compendium of the main different synthetic methodologies focused on the Δα,β-butenolide ring formation, along with selected examples of compounds with relevant biological activities of these promising pharmaceutical entities is presented.


Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1059 ◽  
Author(s):  
Khadija El Hazzam ◽  
Jawhar Hafsa ◽  
Mansour Sobeh ◽  
Manal Mhada ◽  
Moha Taourirte ◽  
...  

Saponins are an important group found in Chenopodium quinoa. They represent an obstacle for the use of quinoa as food for humans and animal feeds because of their bitter taste and toxic effects, which necessitates their elimination. Several saponins elimination methods have been examined to leach the saponins from the quinoa seeds; the wet technique remains the most used at both laboratory and industrial levels. Dry methods (heat treatment, extrusion, roasting, or mechanical abrasion) and genetic methods have also been evaluated. The extraction of quinoa saponins can be carried out by several methods; conventional technologies such as maceration and Soxhlet are the most utilized methods. However, recent research has focused on technologies to improve the efficiency of extraction. At least 40 saponin structures from quinoa have been isolated in the past 30 years, the derived molecular entities essentially being phytolaccagenic, oleanolic and serjanic acids, hederagenin, 3β,23,30 trihydroxy olean-12-en-28-oic acid, 3β-hydroxy-27-oxo-olean-12en-28-oic acid, and 3β,23,30 trihydroxy olean-12-en-28-oic acid. These metabolites exhibit a wide range of biological activities, such as molluscicidal, antifungal, anti-inflammatory, hemolytic, and cytotoxic properties.


Synthesis ◽  
2021 ◽  
Author(s):  
Qingjiang Li ◽  
Zhongwu Guo

Glycosphingolipids (GSLs) are the major vertebrate glycolipids, which contain two distinctive moieties, a glycan and a ceramide, stitched together by a β-glycosidic linkage. The hydrophobic lipid chains of ceramide can insert into the cell membrane to form “lipid rafts” and anchor the hydrophilic glycan onto the cell surface to generate microdomains and function as signaling molecules. GSLs mediate signal transduction, cell interaction, and many other biological activities, and are also related to many diseases. To meet the need of biological studies, chemists have developed various synthetic methodologies to access GSLs. Among them, the application of enzymes to GSL synthesis has witnessed significant advancements in the past decades. This review summarizes briefly the history and progress of enzymatic GSL synthesis.


2009 ◽  
Vol 1217 ◽  
Author(s):  
A. C. Buchanan, III ◽  
Michelle K. Kidder

AbstractOrdered mesoporous silicas continue to find widespread use as supports for diverse applications such as catalysis, separations, and sensors. They provide a versatile platform for these studies because of their high surface area and the ability to control pore size, topology, and surface properties over wide ranges. Furthermore, there is a diverse array of synthetic methodologies for tailoring the pore surface with organic, organometallic, and inorganic functional groups. In this paper, we will discuss two examples of tailored mesoporous silicas and the resultant impact on chemical reactivity. First, we explore the impact of pore confinement on the thermochemical reactivity of phenethyl phenyl ether (PhCH2CH2OPh, PPE), which is a model of the dominant β-aryl ether linkage present in lignin derived from woody biomass. The influence of PPE surface immobilization, grafting density, silica pore diameter, and presence of a second surface-grafted inert “spacer” molecule on the product selectivity has been examined. We will show that the product selectivity can be substantially altered compared with the inherent gas-phase selectivity. Second, we have recently initiated an investigation of mesoporous silica supported, heterobimetallic oxide materials for photocatalytic conversion of carbon dioxide. Through surface organometallic chemistry, isolated M-O-M’ species can be generated on mesoporous silicas that, upon irradiation, form metal to metal charge transfer bands capable of converting CO2 into CO. Initial results from studies of Ti(IV)-O-Sn(II) on SBA-15 will be presented.


Sign in / Sign up

Export Citation Format

Share Document