The Quinazoline-Chalcone and Quinazolinone-Chalcone Hybrids: A Promising Combination for Biological Activity.

Author(s):  
Eduardo Bustos Mass ◽  
Gilmar Vieira Duarte ◽  
Dennis Russowsky

: Quinazoline and/or chalcones derivatives are important targets in several areas of chemical sciences, mainly, in the medicinal chemistry and pharmaceutical research. The purpose of this review is to systematize the information available in the literature, including patents, regarding the benefits exerted by the combination of these two pharmacophores into single molecules. These hybrid compounds can exhibit different biological activities, causing a synergistic or a new effect, compared to the individuals. The variability of biological activities includes anticancer, anti-Alzheimer, antiviral and antimicrobial activities, among others. Additionally, synthetic methodologies to prepare the different molecular architectures were discussed based on their similarities. The increasing number of publications indicates the importance of molecular hybridization on the field of drug discovery.

2020 ◽  
Vol 20 (5) ◽  
pp. 342-368 ◽  
Author(s):  
Juliana de Oliveira Carneiro Brum ◽  
Tanos Celmar Costa França ◽  
Steven R. LaPlante ◽  
José Daniel Figueroa Villar

Hydrazones and their derivatives are very important compounds in medicinal chemistry due to their reported biological activity for the treatment of several diseases, like Alzheimer’s, cancer, inflammation, and leishmaniasis. However, most of the investigations on hydrazones available in literature today are directed to the synthesis of these molecules with little discussion available on their biological activities. With the purpose of bringing lights into this issue, we performed a revision of the literature and wrote this review based on some of the most current research reports of hydrazones and derivatives, making it clear that the synthesis of these molecules can lead to new drug prototypes. Our goal is to encourage more studies focused on the synthesis and evaluation of new hydrazones, as a contribution to the development of potential new drugs for the treatment of various diseases.


Author(s):  
Shivani Mithula ◽  
Adinarayana Nandikolla ◽  
Sankaranarayanan Murugesan ◽  
Venkata GCS Kondapalli

Among all nitrogen-containing heterocycles, the 1,8-naphthyridine scaffold has recently gained an immense amount of curiosity from numerous researchers across fields of medicinal chemistry and drug discovery. This new attention can be ascribed to its versatility of synthesis, its reactiveness and the variety of biological activities it has exhibited. Over the past half-decade, numerous diverse biological evaluations have been conducted on 1,8-naphthyridine and its derivatives in a quest to unravel novel pharmacological facets to this scaffold. Its potency to treat neurodegenerative and immunomodulatory disorders, along with its anti-HIV, antidepressant and antioxidant properties, has enticed researchers to look beyond its broad-spectrum activities, providing further scope for exploration. This review is a consolidated update of previous works on 1,8-naphthyridines and their analogs, focusing on the past 5 years.


2020 ◽  
Vol 12 (10) ◽  
pp. 949-959
Author(s):  
Ranju Bansal ◽  
Ranjit Singh

Steroidal pyrazolines constitute an interesting and promising scaffold for drug discovery as they display diverse chemical reactivity and a wide range of biological activities. Literature reports indicate potent anticancer potential of steroidal pyrazolines along with broad-spectrum antimicrobial activities. Strong neuroprotective effects with steroids possessing pyrazoline moiety have also been observed. Among all the therapeutically active steroidal pyrazolines, D-ring-substituted derivatives are highly potent and the least toxic. The current and futuristic research approaches in this area are focused towards the exploration of this promising scaffold to develop molecules with widespread pharmacological activities. This review article mainly covers the synthetic and pharmacological aspects of steroidal pyrazolines, which will assist the medicinal chemists working in this area in their scientific endeavors.


2020 ◽  
Vol 13 (3) ◽  
pp. 37 ◽  
Author(s):  
Xunan Zheng ◽  
Zhengning Ma ◽  
Dawei Zhang

Imidazole and its derivatives are one of the most vital and universal heterocycles in medicinal chemistry. Owing to their special structural features, these compounds exhibit a widespread spectrum of significant pharmacological or biological activities, and are widely researched and applied by pharmaceutical companies for drug discovery. The van Leusen reaction based on tosylmethylisocyanides (TosMICs) is one of the most appropriate strategies to synthetize imidazole-based medicinal molecules, which has been increasingly developed on account of its advantages. In this review, we summarize the recent developments of the chemical synthesis and bioactivity of imidazole-containing medicinal small molecules, utilizing the van Leusen imidazole synthesis from 1977.


2021 ◽  
Vol 33 (9) ◽  
pp. 1957-1975
Author(s):  
Akhalesh Kumar ◽  
Rakhi Mishra ◽  
Avijit Mazumder ◽  
Rupa Mazumder ◽  
Arun Kumar

This review paper focuses on the different synthetic methodologies that researchers have adopted to synthesize various thiosemicarbazide derivatives with different biological activities of synthesized compounds in the last 20 years. Most of the investigations available in the literature are directed to the biological activities of thiosemicarbazide derivatives with less discussion on its synthetic schemes. This review article presents various reaction scheme, which has been adopted for thiosemicarbazide derivative synthesis along with the reported pharmacological activities of synthesized analogs. The available literature in the article aims to encourage more studies on the synthesis of thiosemicarbazide derivatives, which will help for drug discovery having thiosemicarbazide nucleus.


MedChemComm ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 1803-1817 ◽  
Author(s):  
Khemchand Surana ◽  
Bharatkumar Chaudhary ◽  
Monika Diwaker ◽  
Satyasheel Sharma

Diaryl ketones are an important scaffold in drug discovery due to their prevalence in naturally occurring bioactive compounds. This review discusses molecules containing the benzophenone moiety that have potent biological activity.


Author(s):  
Anjitha Theres Benny ◽  
Sonia D. Arikkatt ◽  
Cijo George Vazhappilly ◽  
Sathananthan Kannadasan ◽  
Renjan Thomas ◽  
...  

: Chromones are the class of secondary metabolites broadly occurred in the plant kingdom in a noticeable quantity. This rigid bicyclic system has been categorized “as privileged scaffolds in compounds” in medicinal chemistry. The wide biological responses made them an important moiety in a drug discovery program. This review provides updates on the various methods of synthesis of chromones and biological applications in medicinal chemistry. Various synthetic strategies for the construction of chromones include readily available phenols, salicylic acid and its derivatives, ynones, chalcones, enaminones, chalcones and 2-hydroxyarylalkylketones as starting materials. Synthesis of chromones by using metal, metal free, nanomaterials and different catalysts are included. Details of diverse biological activities such as anti-cancer agents, antimicrobial agents, anti-viral property, anti-inflammatory agents, antioxidants, Monoamine Oxidase-B (MAO-B) Inhibitors, anti-Alzheimer’s agents, anti-diabetic agent, antihistaminic potential, antiplatelet agents of chromone derivatives are diecussed.


Author(s):  
Pratibha Mehta Luthra ◽  
Nitin Kumar

Abstract: The carbazole skeleton, a key structural motif occurring naturally or chemically synthesized, have shown various biological activities. Molecular hybridization based on the combination of two or more bioactive pharmacophores has been an important tool to convert the potent structural leads to form new hybrid compounds with improved biological activity. In recent years, modifications/substitutions of the carbazole motif at C3, C6, N9 position have been carried to develop novel carbazole based potential anticancer agents in the cancer therapy. In the last fifteen years, several compounds based on carbazole core integrated to pharmacologically active molecular hybrid having active pharmacophore such as 1,3,4-thiadiazole, thiazole, guanidine, sulfonamides, glyoxamides, imidazole, phenanthrene, rhodamine, chalcones, imidazopyridine, platinum 2H-chromen-2-one, hydrazones, piperazine, Isoxazole-thiadiazole, pyrazole etc. have been synthesized showing anticancer profile at sub-micromolar to nano-molar concentrations. We have thoroughly reviewed the design, progress and development of C-3, C-6, and N-9 position substituted carbazole derivatives integrated with various medicinally active pharmacophore as potential anticancer agents evaluated against various cancer cell lines. Additionally, the anticancer mechanism and in vivo activity of the reported compounds have been discussed. This study will support in designing of a new pharmacophore that can be linked to carbazole motif for development for new, potent and target specific anticancer drugs with improved pharmacokinetics and minimal side effects.


Sign in / Sign up

Export Citation Format

Share Document