scholarly journals Phytochemical Components of Two Cyanobacterial Local Strains

2021 ◽  
Vol 11 (1) ◽  
pp. 67-75
Author(s):  
Mohamed Deyab ◽  
Mostafa El-Sheekh ◽  
Reham Hasan ◽  
Abdelgawad Elsadany ◽  
Seham Abu Ahmed
2020 ◽  
Vol 4 (2) ◽  
pp. 605-614
Author(s):  
Murtala M. Namadina ◽  
H. Haruna ◽  
U. Sanusi

Most of biochemical reactions in the body generates Reactive Oxygen Species (ROS), which are involved in the pathogenesis of oxidative stress-related disorders like diabetes, nephrotoxicity, cancer, cardiovascular disorders, inflammation and neurological disorders when they attack biochemical molecules like proteins, lipids and nucleic acid. Antioxidants are used to protect the cells or tissues against potential attack by ROS. Most medicinal plants possess a rich source of antioxidants such as flavonoids, phenols, tannins, alkaloids among others. These phytochemicals are currently pursued as an alternative and complimentary drug. In this study, phytochemical components, antioxidant and acute toxicity study of the methanol extract of stem bark and root of F. sycomorus were carried out using standard methods. Findings from this study revealed the presence of some diagnostic microscopical features such as calcium oxalate, starch, gum/mucilage, lignin, Aleurone grain, suberized/Cuticular cell wall and inulin but calcium carbonate was absent in stem bark but present in the powdered root. Quantitative physical constants include moisture contents (6.40% and 7.82%), ash value (7.20% and 9.30 %) in stem bark and root respectively. Carbohydrates, alkaloid, flavonoids, saponins, tannins, glycoside, steroid, triterpenes and phenols were present in all the extracts. They were found to exhibit potent 1,1,-diphenyl 2-picryl hydrazyl (DPPH) free scavenging activity. The DPPH radical scavenging ability of the extracts showed the following trend Ascorbic acid < stem bark extract˃ root extract. The LD50 of the methanolic stem bark and root extracts were found to be greater than 5000 mg /kg and is considered safe for use. Nonetheless, further


Author(s):  
R Balakumbahan ◽  
J P Joshua

An experiment on ginger was undertaken between April 2012 to March 2015 at Horticultural Research Station, Pechiparai with an objective to identify suitable ginger cultivar or accession with higher yield and quality attributes suitable for high rainfall zone of Tamil Nadu. Twenty four ginger genotypes, local strains and varieties were collected from different ginger growing tracts of India and evaluated for their performance in high rainfall region. Among the twenty four genotypes tested, the accession Z. O- 4 recorded higher fresh rhizome yield (22.16 ha-1) than other genotypes whereas Z. O - 6 recorded highest dry recovery per cent (22.47%). Higher oleoresin and fibre content was recorded in genotypes Z. O – 5 (9.56%) and Z . O – 17 (11.20%) respectively. 


2019 ◽  
Vol 24 (36) ◽  
pp. 4312-4333 ◽  
Author(s):  
Eva M. Domínguez-Martín ◽  
Ana M. Díaz-Lanza ◽  
Célia M. C. Faustino

The exponential growth of cancer cases worldwide together with recent advances concerning the pathophysiological mechanisms of the disease at the molecular level led to a paradigm shift in chemotherapy, from monotherapy to targeted drug combination regimens. However, adverse effects and the emergence of multidrug resistance (MDR) limit the effectiveness of these therapies. In this context, hybrid combinations mixing anticancer drugs and bioactive phytochemical components from medicinal plants, or even plant extracts, that can act synergistically on multiple targets and signaling pathways represent a promising approach with the potential to expand the current therapeutic arsenal. This review aims to provide a synopsis on anticancer hybrid combinations based on their multi-target mechanisms and synergistic effects from an extensive literature search focusing mainly on publications from the last ten years. In most of these combinations, the phytochemical component was shown to enhance the anticancer activity of the chemotherapeutic agent and to sensitize chemoresistant tumors in several types of cancer. Hybrid combinations, due to synergistic interactions, are also associated with less severe adverse events since lower doses can be used to achieve the same therapeutic effect. Further preclinical and clinical studies are needed, as well as the development of an adequate regulatory framework, before hybrid combination therapy can be translated into clinical practice.


2007 ◽  
Vol 5 (25) ◽  
pp. 899-907 ◽  
Author(s):  
M.A Wood ◽  
Y Yang ◽  
E Baas ◽  
D.O Meredith ◽  
R.G Richards ◽  
...  

A number of bone tissue engineering strategies use porous three-dimensional scaffolds in combination with bioreactor regimes. The ability to understand cell behaviour relative to strain profile will allow for the effects of mechanical conditioning in bone tissue engineering to be realized and optimized. We have designed a model system to investigate the effects of strain profile on bone cell behaviour. This simplified model has been designed with a view to providing insight into the types of strain distribution occurring across a single pore of a scaffold subjected to perfusion–compression conditioning. Local strains were calculated at the surface of the pore model using finite-element analysis. Scanning electron microscopy was used in secondary electron mode to identify cell morphology within the pore relative to local strains, while backscattered electron detection in combination with X-ray microanalysis was used to identify calcium deposition. Morphology was altered according to the level of strain experienced by bone cells, where cells subjected to compressive strains (up to 0.61%) appeared extremely rounded while those experiencing zero and tensile strain (up to 0.81%) were well spread. Osteoid mineralization was similarly shown to be dose dependent with respect to substrate strain within the pore model, with the highest level of calcium deposition identified in the intermediate zones of tension/compression.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Shixin Deng ◽  
Brett J. West ◽  
'Afa K. Palu ◽  
C. Jarakae Jensen

Noni blossoms have a long history of medicinal uses in tropical areas. This study was conducted to investigate the major phytochemical components, toxicological properties, and antioxidant activity of noni blossoms. An HPLC-PDA method was developed and validated for the identification and quantification of major components. The major phytochemicals were iridoid glycosides, deacetylasperulosidic acid and asperulosidic acid, and flavonoids, quercetin-3-O-α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside and kaempferol-3-O-α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside, each present at 3.764, 3.576, 1.513, and 3.096 mg/g, respectively. The aqueous extract of noni blossoms, at 500 μg/mL, exhibited greater antioxidant activity in the 2,2-diphenylpicrylhydrazyl radical scavenging assay than green tea (88.11 ± 0.01% versus 76.60 ± 0.05%). A primary DNA damage test in E. coli PQ37 (SOS-chromotest) and a twenty-four hour brine shrimp toxicity test did not reveal any genotoxic or cytotoxic activity. These results provide a useful reference for the identification of noni blossoms as well as preliminary evaluation of safety and efficacy. Further evaluation of the potential applications of noni blossoms is warranted.


2017 ◽  
Vol 699 ◽  
pp. 48-54 ◽  
Author(s):  
Shuangjian Chen ◽  
D.K.L. Tsang ◽  
Li Jiang ◽  
Kun Yu ◽  
Chaowen Li ◽  
...  

2020 ◽  
Vol 6 (3) ◽  
pp. 196-199
Author(s):  
Alina Carabello ◽  
Constanze Neupetsch ◽  
Michael Werner ◽  
Christian Rotsch ◽  
Welf-Guntram Drossel ◽  
...  

AbstractTo increase learning success in surgical training, physical simulators are supplemented by measurement technology to generate and record objective feedback and error detection. An opportunity to detect fractures following hip stem implantation early can be measurement of occurring strains on bone surface. These strains can be determined while using strain gauges, digital image correlation (DIC) or photoelasticity. In this research strain gauges and DIC were compared regarding their suitability as strain measurement tools for use in physical simulators. Therefore a testing method was described to replicate the implantation of a hip stem. Testing devices modelled on a realistic prosthesis were pressed into prepared porcine femora in a two-step procedure with a material testing machine. The local strains occurring on bone surface were determined using an optical measurement system for DIC and strain gauges. The initial fractures in the tested femora are located medial-anterior in most cases (73,6%). With increasing indentation depth of the test device, the strains on bone surface increase. Comparing the local strains determined by DIC and strain gauges consistencies in curves are noticeable. Maximal determined strains before fracturing amount to 0,69% with strain gauges and 0,75% with DIC. In the range of the fracture gap, strain gradients are determined by using DIC. However the detected surfaces are of low quality caused by gaps and motion artefacts. The results show strains on bone surfaces for early fracture detection are measurable with strain gauges and DIC. DIC is assessed as less suitable compared to strain gauges. Furthermore strain gauges have greater level of integration and economic efficiency, so they are preferred the use in surgical training simulators.


2021 ◽  
Vol 45 (4) ◽  
Author(s):  
Naira Sahakyan ◽  
Pierre Andreoletti ◽  
Mustapha Cherkaoui‐Malki ◽  
Margarit Petrosyan ◽  
Armen Trchounian

Sign in / Sign up

Export Citation Format

Share Document