scholarly journals Simulation of ecohydrological processes influencing water supplies in the Tuul River watershed of Mongolia

Author(s):  
Javzansuren Norvanchig ◽  
Timothy O. Randhir

Abstract Achieving sufficient water supplies for multiple uses in the watershed is a major public policy issue. Understanding the current ecohydrologic processes is essential to assess potential impacts on hydrologic regimes. The Tuul River (TR) watershed faces a cold, continental climate with water supply variability. This study aims to simulate watershed processes in the TR watershed and subbasins and analyze the influences of those processes on water resources. Watershed hydrologic processes and their impact on the water resources are modeled using the Soil Water Assessment Tool (SWAT). Calibration and validation were conducted using R2, PBIAS, RSR, and NSE to assess the effectiveness of the SWAT model to replicate annual, monthly streamflow values. The spatial and temporal variations in watershed processes are critical for water resource decisions. With increasing uncertainty and scarcity in water resources, simulation modeling is a valuable tool in watershed management in regions with water scarcity.

2018 ◽  
Vol 10 (8) ◽  
pp. 2897 ◽  
Author(s):  
Binbin Zhang ◽  
Narayan Shrestha ◽  
Prasad Daggupati ◽  
Ramesh Rudra ◽  
Rituraj Shukla ◽  
...  

This paper focuses on understanding the effects of projected climate change on streamflow dynamics of the Grand and Thames rivers of the Northern Lake Erie (NLE) basin. A soil water assessment tool (SWAT) model is developed, calibrated, and validated in a base-period. The model is able to simulate the monthly streamflow dynamics with ‘Good’ to ‘Very Good’ accuracy. The calibrated and validated model is then subjected with daily bias-corrected future climatic data from the Canadian Regional Climate Model (CanRCM4). Five bias-correction methods and their 12 combinations were evaluated using the Climate Model data for hydrologic modeling (CMhyd). Distribution mapping (DM) performed the best and was used for further analysis. Two future time-periods and two IPCC AR5 representative concentration pathways (RCPs) are considered. Results showed marked temporal and spatial variability in precipitation (−37% to +63%) and temperature (−3 °C to +14 °C) changes, which are reflected in evapotranspiration (−52% to +412%) and soil water storage (−60% to +12%) changes, resulting in heterogeneity in streamflow (−77% to +170%) changes. On average, increases in winter (+11%), and decreases in spring (–33%), summer (−23%), and autumn (−15%) streamflow are expected in future. This is the first work of this kind in the NLE and such marked variability in water resources availability poses considerable challenges to water resources planners and managers.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1313
Author(s):  
George Akoko ◽  
Tu Hoang Le ◽  
Takashi Gomi ◽  
Tasuku Kato

The soil and water assessment tool (SWAT) is a well-known hydrological modeling tool that has been applied in various hydrologic and environmental simulations. A total of 206 studies over a 15-year period (2005–2019) were identified from various peer-reviewed scientific journals listed on the SWAT website database, which is supported by the Centre for Agricultural and Rural Development (CARD). These studies were categorized into five areas, namely applications considering: water resources and streamflow, erosion and sedimentation, land-use management and agricultural-related contexts, climate-change contexts, and model parameterization and dataset inputs. Water resources studies were applied to understand hydrological processes and responses in various river basins. Land-use and agriculture-related context studies mainly analyzed impacts and mitigation measures on the environment and provided insights into better environmental management. Erosion and sedimentation studies using the SWAT model were done to quantify sediment yield and evaluate soil conservation measures. Climate-change context studies mainly demonstrated streamflow sensitivity to weather changes. The model parameterization studies highlighted parameter selection in streamflow analysis, model improvements, and basin scale calibrations. Dataset inputs mainly compared simulations with rain-gauge and global rainfall data sources. The challenges and advantages of the SWAT model’s applications, which range from data availability and prediction uncertainties to the model’s capability in various applications, are highlighted. Discussions on considerations for future simulations such as data sharing, and potential for better future analysis are also highlighted. Increased efforts in local data availability and a multidimensional approach in future simulations are recommended.


Hydrology ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 17 ◽  
Author(s):  
Sekela Twisa ◽  
Shija Kazumba ◽  
Mathew Kurian ◽  
Manfred F. Buchroithner

Understanding the variation in the hydrological response of a basin associated with land use changes is essential for developing management strategies for water resources. The impact of hydrological changes caused by expected land use changes may be severe for the Wami river system, given its role as a crucial area for water, providing food and livelihoods. The objective of this study is to examine the influence of land use changes on various elements of the hydrological processes of the basin. Hybrid classification, which includes unsupervised and supervised classification techniques, is used to process the images (2000 and 2016), while CA–Markov chain analysis is used to forecast and simulate the 2032 land use state. In the current study, a combined approach—including a Soil and Water Assessment Tool (SWAT) model and Partial Least Squares Regression (PLSR)—is used to explore the influences of individual land use classes on fluctuations in the hydrological components. From the study, it is evident that land use has changed across the basin since 2000 (which is expected to continue in 2032), as well as that the hydrological effects caused by land use changes were observed. It has been found that the major land use changes that affected hydrology components in the basin were expansion of cultivation land, built-up area and grassland, and decline in natural forests and woodland during the study period. These findings provide baseline information for decision-makers and stakeholders concerning land and water resources for better planning and management decisions in the basin resources’ use.


2018 ◽  
Vol 49 (3) ◽  
pp. 908-923 ◽  
Author(s):  
Richarde Marques da Silva ◽  
José Carlos Dantas ◽  
Joyce de Araújo Beltrão ◽  
Celso A. G. Santos

Abstract A Soil and Water Assessment Tool (SWAT) model was used to model streamflow in a tropical humid basin in the Cerrado biome, southeastern Brazil. This study was undertaken in the Upper São Francisco River basin, because this basin requires effective management of water resources in drought and high-flow periods. The SWAT model was calibrated for the period of 1978–1998 and validated for 1999–2007. To assess the model calibration and uncertainty, four indices were used: (a) coefficient of determination (R2); (b) Nash–Sutcliffe efficiency (NS); (c) p-factor, the percentage of data bracketed by the 95% prediction uncertainty (95PPU); and (d) r-factor, the ratio of average thickness of the 95PPU band to the standard deviation of the corresponding measured variable. In this paper, average monthly streamflow from three gauges (Porto das Andorinhas, Pari and Ponte da Taquara) were used. The results indicated that the R2 values were 0.73, 0.80 and 0.76 and that the NS values were 0.68, 0.79 and 0.73, respectively, during the calibration. The validation also indicated an acceptable performance with R2 = 0.80, 0.76, 0.60 and NS = 0.61, 0.64 and 0.58, respectively. This study demonstrates that the SWAT model provides a satisfactory tool to assess basin streamflow and management in Brazil.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1465 ◽  
Author(s):  
Getenet Nigussie ◽  
Mamaru A. Moges ◽  
Michael M. Moges ◽  
Tammo S. Steenhuis

Planning and decision making for new irrigation development projects requires the systematic assessment of irrigable land together with available water resources. The data required are usually not available in developing countries, and therefore a method was developed for quantifying surface water resources and potentially irrigable land in ungauged watersheds in the Upper Blue Nile Basin using Soil and Water Assessment Tool (SWAT) model and Multi-Criterion Decision Evaluation (MCDE). The method was tested using the Lah river basin in the Jabitenan district and then applied in the whole area, including ungauged areas. In MCDE, soil type, slope, land use, and river proximity were considered. Onion, Cabbage and Tomato were grown on the identified irrigable areas. The predicted monthly stream discharge agreed well with observed values, with Nash and Sutcliffe efficiencies of 0.87 during calibration and 0.68 for validation. The SWAT model calibrated parameters from the gauged catchment were used to simulate the discharge of the ungauged catchments. The potential irrigable land was determined in Jabitenan woreda and included the Rivers like Birr, Tikurwuha, Gunagun, Leza Lah, Geray, Arara, Debolah, Guysa, and Silala, with an area of 460 km2. By evaluating gross irrigation demand of irrigable land with available flow in rivers (both observed and simulated), the actual surface irrigation potential was 47 km2. The main limitation for surface irrigation in all districts was the available water and not the land suitable for irrigation. Therefore, the study suggests that in order to irrigate a greater portion of the irrigable land, water should be stored during the monsoon rain phase for use in the last part of the dry phase.


2020 ◽  
Vol 7 (8) ◽  
pp. 191957 ◽  
Author(s):  
Muhammad Izhar Shah ◽  
Asif Khan ◽  
Tahir Ali Akbar ◽  
Quazi K. Hassan ◽  
Asim Jahangir Khan ◽  
...  

The Upper Indus Basin (UIB) is a major source of supplying water to different areas because of snow and glaciers melt and is also enduring the regional impacts of global climate change. The expected changes in temperature, precipitation and snowmelt could be reasons for further escalation of the problem. Therefore, estimation of hydrological processes is critical for UIB. The objectives of this paper were to estimate the impacts of climate change on water resources and future projection for surface water under different climatic scenarios using soil and water assessment tool (SWAT). The methodology includes: (i) development of SWAT model using land cover, soil and meteorological data; (ii) calibration of the model using daily flow data from 1978 to 1993; (iii) model validation for the time 1994–2003; (iv) bias correction of regional climate model (RCM), and (v) utilization of bias-corrected RCM for future assessment under representative concentration pathways RCP4.5 and RCP8.5 for mid (2041–2070) and late century (2071–2100). The results of the study revealed a strong correlation between simulated and observed flow with R 2 and Nash–Sutcliff efficiency (NSE) equal to 0.85 each for daily flow. For validation, R 2 and NSE were found to be 0.84 and 0.80, respectively. Compared to baseline period (1976–2005), the result of RCM showed an increase in temperature ranging from 2.36°C to 3.50°C and 2.92°C to 5.23°C for RCP4.5 and RCP8.5 respectively, till the end of the twenty-first century. Likewise, the increase in annual average precipitation is 2.4% to 2.5% and 6.0% to 4.6% (mid to late century) under RCP4.5 and RCP8.5, respectively. The model simulation results for RCP4.5 showed increase in flow by 19.24% and 16.78% for mid and late century, respectively. For RCP8.5, the increase in flow is 20.13% and 15.86% during mid and late century, respectively. The model was more sensitive towards available moisture and snowmelt parameters. Thus, SWAT model could be used as effective tool for climate change valuation and for sustainable management of water resources in future.


2018 ◽  
Vol 10 (9) ◽  
pp. 3277 ◽  
Author(s):  
Javier Senent-Aparicio ◽  
Sitian Liu ◽  
Julio Pérez-Sánchez ◽  
Adrián López-Ballesteros ◽  
Patricia Jimeno-Sáez

Climate change and the land-use and land-cover changes (LULC) resulting from anthropic activity are important factors in the degradation of an ecosystem and in the availability of a basin’s water resources. To know how these activities affect the quantity of the water resources of basins, such as the Segura River Basin, is of vital importance. In this work, the Soil and Water Assessment Tool (SWAT) was used for the study of the abovementioned impacts. The model was validated by obtaining a Nash–Sutcliffe efficiency (NSE) of 0.88 and a percent bias (PBIAS) of 17.23%, indicating that SWAT accurately replicated monthly streamflow. Next, land-use maps for the years of 1956 and 2007 were used to establish a series of scenarios that allowed us to evaluate the effects of these activities on both joint and individual water resources. A reforestation plan applied in the basin during the 1970s caused that the forest area had almost doubled, whereas the agricultural areas and shrubland had been reduced by one-third. These modifications, together with the effect of climate change, have led to a decrease of 26.3% in the quantity of generated water resources, not only due to climate change but also due to the increase in forest area.


2020 ◽  
Vol 13 (2) ◽  
pp. 576
Author(s):  
Letícia Lopes Martins ◽  
Wander Araújo Martins ◽  
Jener Fernando Leite De Moraes ◽  
Mário José Pedro Júnior ◽  
Isabella Clerici De Maria

A dificuldade na gestão de recursos hídricos aliada à dinâmica do uso e ocupação do solo em bacias hidrográficas agrícolas são fatores relevantes para a conservação da água e solo. A gestão de bacias hidrográficas, bem como o monitoramento de cenários de expansão agrícola e mudança no uso do solo, podem se beneficiar de ferramentas de modelagem hidrossedimentológica, como o SWAT (Soil and Water Assessment Tool). Entretanto, para que os resultados obtidos sejam confiáveis, os modelos precisam ser calibrados. Objetivou-se, neste trabalho, calibrar e validar o modelo SWAT, para a variável vazão, tendo como base a bacia hidrográfica do Ribeirão do Pinhal, Limeira -São Paulo, que se caracteriza pela expansão da cana-de-açúcar sobre áreas citrícolas. Dados de vazão de um posto fluviométrico localizado no exutório da bacia foram utilizados para a calibração e validação, a partir de séries temporais diferentes.  Utilizou-se o software QSWAT para a simulação hidrológica e o SWAT-CUP para a calibração e validação do modelo. O modelo foi calibrado e validado resultando nos seguintes índices estatísticos NSE=0,64; PBIAS=15,2 e RSR=0,60 para calibração e NSE=0,68 PBIAS=-2,8 e RSR=0,56 para a validação. O ajuste de parâmetros do SWAT (USLE_P, USLE_C, CN2) e do calendário de operações da cana-de-açúcar em acordo com a situação real da bacia foi necessário para a calibração do modelo. Os resultados indicam que o modelo SWAT subestima as vazões extremas, no entanto, dentro de faixa aceitável. O SWAT, após a calibração, pode ser utilizado na gestão de recursos hídricos na bacia do Ribeirão do Pinhal.Hydrological calibration of the SWAT model in a watershed characterized by the expansion of sugarcane cultivationA B S T R A C TThe difficulty in water resources management combined with the dynamics of land use and occupation in agricultural watersheds are relevant factors for water and soil conservation. River basin management, as well as monitoring scenarios of agricultural expansion and land-use change, can benefit from hydrossedimentological modeling tools such as the SWAT (Soil and Water Assessment Tool). However, for the results to be reliable, the models must be calibrated. The objective of this study was to calibrate and validate the SWAT model for the flow variable, based on the Ribeirão do Pinhal watershed, Limeira-São Paulo, which is characterized by the expansion of sugarcane over citrus areas. Flow data from a fluviometric station located in the basin's outfall were used for calibration and validation from different time series. QSWAT software was used for hydrological simulation and SWAT-CUP for model calibration and validation. The model was calibrated and validated resulting in the following statistical indices NSE = 0.64; PBIAS = 15.2 and RSR = 0.60 for calibration and NSE = 0.68 PBIAS = -2.8 and RSR = 0.56 for validation. Adjustment of SWAT parameters (USLE_P, USLE_C, and CN2) and the sugarcane operation schedule according to the actual basin situation was necessary for model calibration. The results indicate that the SWAT model underestimates the extreme flow rates, however, within an acceptable range. After calibration, the SWAT can be used to manage water resources in the Ribeirão do Pinhal basin.Keywords: Hydrologic simulation; land use; flow rate.


2013 ◽  
Vol 10 (11) ◽  
pp. 13955-13978 ◽  
Author(s):  
A. A. Shawul ◽  
T. Alamirew ◽  
M. O. Dinka

Abstract. To utilize water resources in a sustainable manner, it is necessary to understand the quantity and quality in space and time. This study was initiated to evaluate the performance and applicability of the physically based Soil and Water Assessment Tool (SWAT) model in analyzing the influence of hydrologic parameters on the streamflow variability and estimation of monthly and seasonal water yield at the outlet of Shaya mountainous watershed. The calibrated SWAT model performed well for simulation of monthly streamflow. Statistical model performance measures, coefficient of determination (r2) of 0.71, the Nash–Sutcliffe simulation efficiency (ENS) of 0.71 and percent difference (D) of 3.69, for calibration and 0.76, 0.75 and 3.30, respectively for validation, indicated good performance of the model simulation on monthly time step. Mean monthly and annual water yield simulated with the calibrated model were found to be 25.8 mm and 309.0 mm, respectively. Overall, the model demonstrated good performance in capturing the patterns and trend of the observed flow series, which confirmed the appropriateness of the model for future scenario simulation. Therefore, SWAT model can be taken as a potential tool for simulation of the hydrology of unguaged watershed in mountainous areas, which behave hydro-meteorologically similar with Shaya watershed. Future studies on Shaya watershed modeling should address the issues related to water quality and evaluate best management practices.


2020 ◽  
Vol 12 (24) ◽  
pp. 10395
Author(s):  
Yufei Jiao ◽  
Jia Liu ◽  
Chuanzhe Li ◽  
Wei Wang ◽  
Fuliang Yu ◽  
...  

The influence of climate change and human activities on hydrological elements has increased along with increasing dependence on water resources. Therefore, quantitative attribution of hydrological elements has received wide attention. In this study, the double mass curve (DMC) is used to assess the abrupt change point of the hydrological data series, based on which the periods with/without large-scale human activities causing runoff attenuation are separated. The land use transition matrix is then employed to analyze the land use types at different historical stages, and the sensitivities of the runoff attenuation to different land use/cover change (LUCC) categories are quantified. A soil and water assessment tool (SWAT) model that considers the underlying surface is constructed with six designed scenarios of different climate and LUCC conditions. Taking three typical mountainous basins in North China as the study area, the quantitative contributions of climate change and human activities to the water resources are identified. The results of the study have brought enlightenment to the water resource sustainable utilization and management in North China, and the methodologies can be transferred to runoff attribution analysis in water shortage areas.


Sign in / Sign up

Export Citation Format

Share Document