scholarly journals Solar-Climatic Relationship and Implications for Hydrology

2001 ◽  
Vol 32 (2) ◽  
pp. 65-84 ◽  
Author(s):  
Ronny Berndtsson ◽  
Cintia Uvo ◽  
Minoru Matsumoto ◽  
Kenji Jinno ◽  
Akira Kawamura ◽  
...  

Research during the latest years has indicated a significant connection between climate and solar activity. Specifically, a relationship between Northern Hemisphere air temperature and sunspot cycle length (SCL) has been shown. By using monthly SCL and land air temperature from 1753-1990 (238 years) we show that this relationship also holds for a single observation point in south of Sweden. Using data after 1850 yields a statistically significant linear correlation of 0.54 between SCL and mean temperature. Furthermore, we show that there are indications of a low-dimensional chaotic component in both SCL and the interconnected mean land air temperature. This has important implications for hydrology and water resources applications. By pure definition of chaos this means that it is virtually impossible to make long-term predictions of mean temperature. Similarly, because of the strong connection between temperature and many hydrological components, it is probable that also long-term water balance constituents may follow chaotic trajectories. Long-term projections of water resources availability may therefore be impossible. Repeated short-term predictions may however, still be viable. We exemplify this by showing a technique to predict interpolated mean temperature 6 and 12 months ahead in real time with encouraging results. Improving the technique further may be possible by including information on the SCL attractor. To summarize, research into the possible existence of chaotic components in hydrological processes should be an important task for the next years to come.

2021 ◽  
Author(s):  
Hanna Bolbot ◽  
Vasyl Grebin

<p>The current patterns estimation of the water regime under climate change is one of the most urgent tasks in Ukraine and the world. Such changes are determined by fluctuations in the main climatic characteristics - precipitation and air temperature, which are defined the value of evaporation. These parameters influence on the annual runoff distribution and long-term runoff fluctuations. In particular, the annual precipitation redistribution is reflected in the corresponding changes in the river runoff.<br>The assessment of the current state and nature of changes in precipitation and river runoff of the Siverskyi Donets River Basin was made by comparing the current period (1991-2018) with the period of the climatological normal (1961-1990).<br>In general, for this area, it was defined the close relationship between the amount of precipitation and the annual runoff. Against the background of insignificant (about 1%) increase of annual precipitation in recent decades, it was revealed their redistribution by seasons and separate months. There is a decrease in precipitation in the cold period (November-February). This causes (along with other factors) a decrease in the amount of snow and, accordingly, the spring flood runoff. There are frequent cases of unexpressed spring floods of the Siverskyi Donets River Basin. The runoff during March-April (the period of spring flood within the Ukrainian part of the basin) decreased by almost a third.<br>The increase of precipitation during May-June causes a corresponding (insignificant) increase in runoff in these months. The shift of the maximum monthly amount of precipitation from May (for the period 1961-1990) to June (in the current period) is observed.<br>There is a certain threat to water supply in the region due to the shift in the minimum monthly amount of precipitation in the warm period from October to August. Compared with October, there is a higher air temperature and, accordingly, higher evaporation in August, which reduces the runoff. Such a situation is solved by rational water resources management of the basin. The possibility of replenishing water resources in the basin through the transfer runoff from the Dnieper (Dnieper-Siverskyi Donets channel) and the annual runoff redistribution in the reservoir system causes some increase in the river runoff of summer months in recent decades. This is also contributed by the activities of the river basin management structures, which control the maintenance water users' of minimum ecological flow downstream the water intakes and hydraulic structures in the rivers of the basin.<br>Therefore, in the period of current climate change, the annual runoff distribution of the Siverskyi Donets River Basin has undergone significant changes, which is related to the annual precipitation redistribution and anthropogenic load on the basin.</p>


2021 ◽  
Author(s):  
Thibault Mathevet ◽  
Cyril Thébault ◽  
Jérôme Mansons ◽  
Matthieu Le Lay ◽  
Audrey Valery ◽  
...  

<p>The aim of this communication is to present a study on climate variability and change on snow water equivalent (SWE) and streamflow over the 1900-2100 period in a mediteranean and moutainuous area.  It is based on SWE and streamflow observations, past reconstructions (1900-2018) and future GIEC scenarii (up to 2100) of some snow courses and hydrological stations situated within the French Southern Alps (Mercantour Natural Parc). This has been conducted by EDF (French hydropower company) and Mercantour Natural Parc.</p><p>This issue became particularly important since a decade, especially in regions where snow variability had a large impact on water resources availability, poor snow conditions in ski resorts and artificial snow production or impacts on mountainous ecosystems (fauna and flora). As a water resources manager in French mountainuous regions, EDF developed and managed a large hydrometeorological network since 1950. A recent data rescue research allowed to digitize long term SWE manual measurements of a hundred of snow courses within the French Alps. EDF have been operating an automatic SWE sensors network, complementary to historical snow course network. Based on numerous SWE observations time-series and snow modelization (Garavaglia et al., 2017), continuous daily historical SWE time-series have been reconstructed within the 1950-2018 period. These reconstructions have been extented to 1900 using 20 CR (20<sup>th</sup> century reanalyses by NOAA) reanalyses (ANATEM method, Kuentz et al., 2015) and up to 2100 using GIEC Climate Change scenarii (+4.5 W/m² and + 8.5 W/m² hypotheses). In the scope of this study, Mercantour Natural Parc is particularly interested by snow scenarii in the future and its impacts on their local flora and fauna.</p><p>Considering observations within Durance watershed and Mercantour region, this communication focuses on: (1) long term (1900-2018) analyses of variability and trend of hydrometeorological and snow variables (total precipitation, air temperature, snow water equivalent, snow line altitude, snow season length, streamflow regimes) , (2) long term variability of snow and hydrological regime of snow dominated watersheds and (3) future trends (2020 -2100) using GIEC Climate Change scenarii.</p><p>Comparing old period (1950-1984) to recent period (1984-2018), quantitative results within these regions roughly shows an increase of air temperature by 1.2 °C, an increase of snow line height by 200m, a reduction of SWE by 200 mm/year and a reduction of snow season duration by 15 days. Characterization of the increase of snow line height and SWE reduction are particularly important at a local and watershed scale. Then, this communication focuses on impacts on long-term time scales (2050, 2100). This long term change of snow dynamics within moutainuous regions both impacts (1) water resources management, (2) snow resorts and artificial snow production developments or (3) ecosystems dynamics.Connected to the evolution of snow seasonality, the impacts on hydrological regime and some streamflow signatures allow to characterize the possible evolution of water resources in this mediteranean and moutianuous region This study allowed to provide some local quantitative scenarii.</p>


2006 ◽  
Vol 19 (5) ◽  
pp. 854-871 ◽  
Author(s):  
Dian J. Seidel ◽  
Melissa Free

Abstract Using a reanalysis of the climate of the past half century as a model of temperature variations over the next half century, tests of various data collection protocols are made to develop recommendations for observing system requirements for monitoring upper-air temperature. The analysis focuses on accurately estimating monthly climatic data (specifically, monthly average temperature and its standard deviation) and multidecadal trends in monthly temperatures at specified locations, from the surface to 30 hPa. It does not address upper-air network size or station location issues. The effects of reducing the precision of temperature data, incomplete sampling of the diurnal cycle, incomplete sampling of the days of the month, imperfect long-term stability of the observations, and changes in observation schedule are assessed. To ensure accurate monthly climate statistics, observations with at least 0.5-K precision, made at least twice daily, at least once every two or three days are sufficient. Using these same criteria, and maintaining long-term measurement stability to within 0.25 (0.1) K, for periods of 20 to 50 yr, errors in trend estimates can be avoided in at least 90% (95%) of cases. In practical terms, this requires no more than one intervention (e.g., instrument change) over the period of record, and its effect must be to change the measurement bias by no more than 0.25 (0.1) K. The effect of the first intervention dominates the effects of subsequent, uncorrelated interventions. Changes in observation schedule also affect trend estimates. Reducing the number of observations per day, or changing the timing of a single observation per day, has a greater potential to produce errors in trends than reducing the number of days per month on which observations are made. These findings depend on the validity of using reanalysis data to approximate the statistical nature of future climate variations, and on the statistical tests employed. However, the results are based on conservative assumptions, so that adopting observing system requirements based on this analysis should result in a data archive that will meet climate monitoring needs over the next 50 yr.


Author(s):  
M. I. Romashchenko ◽  
Yu. V. Husyev ◽  
A. P. Shatkovskyi ◽  
R. V. Saidak ◽  
M. V. Yatsyuk ◽  
...  

The article highlights the research results on the assessment of natural moisture supply in Ukraine, the state of water resources and agricultural production in the face of modern climate change taking into account the forecast for the medium and long term prospects. It was established that the rate of air temperature growth for the period of 1975-2019 in Ukraine ranges from 0.61 to 0.82oC, while in neighboring post-Soviet countries (Russia, Moldova, Belarus) – this figure is 0.47 - 0.59oC, and in the northern hemisphere and Europe – it is 0.34 and 0.47oC respectively. These data show that the rate of air temperature rise in Ukraine is much higher compared to European countries and the whole world. The rapid rise in average annual temperature in Ukraine is not accompanied by a significant increase in precipitation. Its amount in Ukraine as well as in some other regions remains virtually unchanged. Due to the steady increase in temperature, the area of ​​Ukraine with a significant deficit of natural moisture supply for the period of 1990-2015 increased by 7%, and with excessive and sufficient natural moisture supply, on the contrary, decreased by 10%. If the current warming rates are kept until 2050 and 2100, the territory of the country with insufficient humidity will increase up to 56 and 71%, respectively. As a result of such changes, there is a high probability of medium and long-term prospects of increasing arable land with insufficient natural moisture supply up to 20.6 million hectares (67%) and up to 24.9 million hectares (80%) with a simultaneous decrease in arable land with sufficient natural moisture supply up to 5.5 - 1.8 million hectares. At present, the potential total evaporation is 40-45 km3/year higher than in 1990. As a result, despite the decrease in water consumption, the total amount of water consumption taken from the territory of Ukraine is 20-25 km3 higher. Further climate change will lead to an increase in the volume of additional water consumption till 2050 by 80 km3, and till 2100 - by almost 150 km3 compared to 1990. Modern climate change has significantly affected the cropping systems and their productivity at regional level. The average yield of grain and legumes in the Forest-Steppe and Polissya compared to 1990 increased by 46-61%, and in the Steppe it decreased by 10%. A similar trend is observed with regard to the changes in the productivity of other major cereals, except corn, the yield of which increased in all areas, but in the Forest-Steppe and Polissya by 71-82%, and in the Steppe - only by 9%. The general increase in the production of grain and legumes in the country for the last years was only due to more humid regions - Polissya and Forest-Steppe. Climate change, which has already taken place, proved to be favorable for the spread of the most economically profitable crops in the north of the country, while limiting their production in the south. Thus, in the face of climate change, the conditions of moisture supply in the territory of Ukraine are the main limiting factor that limits not only the level of crop productivity, but also the use of natural and anthropogenic potential of agriculture.


2021 ◽  
Author(s):  
Allyson B. Bangerter ◽  
Eliana R. Heiser ◽  
Jay D. Carlisle ◽  
Robert A. Miller

ABSTRACT Weather is thought to influence raptor reproduction through effects on prey availability, condition of adults, and survival of nests and young; however, there are few long-term studies of the effects of weather on raptor reproduction. We investigated the effects of weather on Northern Goshawk (Accipiter gentilis; henceforth goshawk) breeding rate, productivity, and fledging date in south-central Idaho and northern Utah, USA. Using data from 42 territories where we found evidence of breeding attempts in ≥1 yr from 2011–2019, we analyzed breeding rates using 315 territory–season combinations, analyzed productivity for 134 breeding attempts, and analyzed fledging date for 118 breeding attempts. We examined 35 predictor variables from four categories: precipitation, temperature, wind, and snowpack. Of the variables we evaluated, April precipitation, previous year's April–July precipitation, April–May mean temperature, and March–May mean temperature were related to measures of goshawk reproduction. Greater April–July precipitation in the previous year and lower April precipitation in the current year were associated with higher breeding rates. Years with warmer average April–May temperatures were associated with increased goshawk productivity. Years with greater April–July precipitation during the previous year and lower mean March–May temperatures were associated with later fledging dates. Based on these relationships, we considered projected changes in weather in the northern Great Basin over the next 50 yr as a result of climate change (without directly accounting for habitat changes caused by climate change), and predicted that climate change will: (a) have no significant effect on goshawk breeding rate, (b) have a positive effect on goshawk productivity, and (c) cause a shift toward earlier goshawk breeding. Our results indicate that weather is significantly related to goshawk reproduction in the northern Great Basin, and we suggest that the relationship between raptor breeding and weather be further investigated to enable higher resolution predictions of how changes in the climate may influence their populations, particularly changes that may not have been captured by our study.


2018 ◽  
Vol 14 (1) ◽  
pp. 44-57
Author(s):  
S. N. Shumov

The spatial analysis of distribution and quantity of Hyphantria cunea Drury, 1973 across Ukraine since 1952 till 2016 regarding the values of annual absolute temperatures of ground air is performed using the Gis-technologies. The long-term pest dissemination data (Annual reports…, 1951–1985; Surveys of the distribution of quarantine pests ..., 1986–2017) and meteorological information (Meteorological Yearbooks of air temperature the surface layer of the atmosphere in Ukraine for the period 1951-2016; Branch State of the Hydrometeorological Service at the Central Geophysical Observatory of the Ministry for Emergencies) were used in the present research. The values of boundary negative temperatures of winter diapause of Hyphantria cunea, that unable the development of species’ subsequent generation, are received. Data analyses suggests almost complete elimination of winter diapausing individuals of White American Butterfly (especially pupae) under the air temperature of −32°С. Because of arising questions on the time of action of absolute minimal air temperatures, it is necessary to ascertain the boundary negative temperatures of winter diapause for White American Butterfly. It is also necessary to perform the more detailed research of a corresponding biological material with application to the freezing technics, giving temperature up to −50°С, with the subsequent analysis of the received results by the punched-analysis.


2010 ◽  
Vol 7 ◽  
pp. 129-142
Author(s):  
M.A. Ilgamov ◽  
A.G. Khakimov

The article investigates the reflection of a longitudinal damped travelling wave from the transverse notch and its movement along an infinite rod plunged into viscous liquid. The simplest model for the stress deformed state in the notch zone is applied. The solution is found to depend on the parameters of the liquid and damping characteristics in the material of the rod and the surrounding liquid. The solution to the inverse problem makes it possible to define the coordinate of the notch and the parameter that contains its depth and length using data on both the incident and reflected waves at the observation point.


2007 ◽  
Vol 5 ◽  
pp. 212-220 ◽  
Author(s):  
M.A. Ilgamov ◽  
A.G. Khakimov

This article investigates the reflection of a longitudinal wave from the transverse notch and its movement along an infinite rod. The dependence is obtained between the reflected wave and parameters of the notch. The statement of the inverse problem allows defining the coordinate of the notch and the parameter that contains its depth and length using data on both the incident and reflected waves at the observation point.


Rheumatology ◽  
2021 ◽  
Author(s):  
Yuichi Yamasaki ◽  
Norimoto Kobayashi ◽  
Shinji Akioka ◽  
Kazuko Yamazaki ◽  
Shunichiro Takezaki ◽  
...  

Abstract Objectives This study aimed to investigate the clinical characteristics, treatment and prognosis of juvenile idiopathic inflammatory myopathies (JIIM) in Japan for each myositis-specific autoantibody (MSA) profile. Methods A multicentre, retrospective study was conducted using data of patients with JIIM at nine paediatric rheumatology centres in Japan. Patients with MSA profiles, determined by immunoprecipitation using stored serum from the active stage, were included. Results MSA were detected in 85 of 96 cases eligible for the analyses. Over 90% of the patients in this study had one of the following three MSA types: anti-melanoma differentiation-associated protein 5 (MDA5) (n = 31), anti-transcriptional intermediary factor 1 alpha and/or gamma subunits (TIF1γ) (n = 25) and anti-nuclear matrix protein 2 (NXP2) (n = 25) antibodies. Gottron papules and periungual capillary abnormalities were the most common signs of every MSA group in the initial phase. The presence of interstitial lung disease (ILD) was the highest risk factor for patients with anti-MDA5 antibodies. Most patients were administered multiple drug therapies: glucocorticoids and MTX were administered to patients with anti-TIF1γ or anti-NXP2 antibodies. Half of the patients with anti-MDA5 antibodies received more than three medications including i.v. CYC, especially patients with ILD. Patients with anti-MDA5 antibodies were more likely to achieve drug-free remission (29 vs 21%) and less likely to relapse (26 vs 44%) than others. Conclusion Anti-MDA5 antibodies are the most common MSA type in Japan, and patients with this antibody are characterized by ILD at onset, multiple medications including i.v. CYC, drug-free remission, and a lower frequency of relapse. New therapeutic strategies are required for other MSA types.


2021 ◽  
pp. 1420326X2110036
Author(s):  
Qian Xu ◽  
Chan Lu ◽  
Rachael Gakii Murithi ◽  
Lanqin Cao

A cohort case–control study was conducted in XiangYa Hospital, Changsha, China, which involved 305 patients and 399 healthy women, from June 2010 to December 2018, to evaluate the association between Chinese women’s short- and long-term exposure to industrial air pollutant, SO2 and gynaecological cancer (GC). We obtained personal and family information from the XiangYa Hospital electronic computer medical records. Using data obtained from the air quality monitoring stations in Changsha, we estimated each woman’s exposure to the industrial air pollutant, sulphur dioxide (SO2), for different time windows, including the past 1, 5, 10 and 15 years before diagnosis of the disease. A multiple logistic regression model was used to assess the association between GC and SO2 exposure. GC was significantly associated with long-term SO2 exposure, with adjusted odds ratio (95% confidence interval) = 1.56 (1.10–2.21) and 1.81 (1.07–3.06) for a per interquartile range increase in the past 10 and 15 years, respectively. Sensitivity analysis showed that different groups reacted in different ways to long-term SO2 exposure. We concluded that long-term exposure to high concentration of industrial pollutant, SO2 is associated with the development of GC. This finding has implications for the prevention and reduction of GC.


Sign in / Sign up

Export Citation Format

Share Document