Toward an innovative interdisciplinary method for vulnerability assessments: the case of Taiwan

2014 ◽  
Vol 6 (3) ◽  
pp. 501-517 ◽  
Author(s):  
Chia-Chi Lee ◽  
Ching-Pin Tung ◽  
Tzu-Ming Liu ◽  
Jung-Hsuan Tsao ◽  
Gin-Rong Liu ◽  
...  

Humans live in complicated social-ecological systems within which we interact with our surrounding environment. This interaction is of concern to various disciplines, which focus on various system elements (factors), many of which are mutually interacting. Assessments of vulnerability to climate change assist us in realizing the magnitude of the impact of various climate change factors, allowing us to determine and adopt appropriate adaptation measures. Nevertheless, previous impact-driven vulnerability assessments are either disciplinary or multidisciplinary and cannot easily account for the interaction between different disciplines. This paper proposes an interdisciplinary vulnerability assessment method (IVAM) to develop a framework by which interdisciplinary vulnerabilities can be understood. In addition, IVAM processes can promote the emergence of an interdisciplinary system, which could be used to identify the scope of interdisciplinary influence of a particular policy, along with the critical elements (factors) and government stakeholders of such policies. This research seeks to further the policy goals of the national government of Taiwan vis-à-vis climate change, covering the joint cooperation of experts from fields including environmental disaster management, public health, food security, ecology, and water resource management. The specific advantage of IVAM, however, is that this universal model is not limited to any of these specific disciplines.

Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1884
Author(s):  
Jihoon Park ◽  
Euntae Jung ◽  
Imgook Jung ◽  
Jaepil Cho

Evaluating the impact of climate change on water resources is necessary for improving water resource management and adaptation measures at the watershed level. This study evaluates the impact of climate change on streamflow in South Korea using downscaled climate change information based on the global climate model (GCM) and hydrological simulation program–FORTRAN model. Representative concentration pathway (RCP) scenarios 4.5 and 8.5 W/m2 were employed in this study. During the distant future (2071–2099), the flow increased by 15.11% and 24.40% for RCP scenarios 4.5 and 8.5 W/m2, respectively. The flow is highly dependent on precipitation and evapotranspiration. Both precipitation and evapotranspiration increased, but the relative change of precipitation was greater than the relative change of evapotranspiration. For this reason, the flow would show a significant increase. Additionally, for RCP 8.5 W/m2, the variability of the flow according to the GCM also increased because the variability of precipitation increased. Moreover, for RCP 8.5 W/m2, the summer and autumn flow increased significantly, and the winter flow decreased in both scenarios. The variability in autumn and winter was so great that the occurrence of extreme flow could intensify further. These projections indicated the possibility of future flooding and drought in summer and winter. Regionally, the flow was expected to show a significant increase in the southeastern region. The findings presented for South Korea could be used as primary data in establishing national climate change adaptation measures.


2021 ◽  
Author(s):  
Takahiro Oyama ◽  
Jun'ya Takakura ◽  
Minoru Fujii ◽  
Kenichi Nakajima ◽  
Yasuaki Hijioka

Abstract There are concerns about the impact of climate change on Olympic Games, especially endurance events, such as marathons. In recent competitions, many marathon runners dropped out of their races due to extreme heat, and it is expected that more areas will be unable to host the Olympic Games due to climate change. Here, we show the feasibility of the Olympic marathon considering the variations in climate factors, socioeconomic conditions, and adaptation measures. The number of current possible host cities will decline by up to 24% worldwide by the late 21st century. Dozens of emerging cities, especially in Asia, will not be capable of hosting the marathon under the highest emission scenario. Moving the marathon from August to October and holding the games in multiple cities in the country are effective measures, and they should be considered if we are to maintain the regional diversity of the games.


2015 ◽  
Vol 3 (7) ◽  
pp. 4353-4389
Author(s):  
S. Quiroga ◽  
C. Suárez

Abstract. This paper examines the effects of climate change and drought on agricultural outputs in Spanish rural areas. By now the effects of drought as a response to climate change or policy restrictions have been analyzed through response functions considering direct effects on crop productivity and incomes. These changes also affect incomes distribution in the region and therefore modify the social structure. Here we consider this complementary indirect effect on social distribution of incomes which is essential in the long term. We estimate crop production functions for a range of Mediterranean crops in Spain and we use a decomposition of inequalities measure to estimate the impact of climate change and drought on yield disparities. This social aspect is important for climate change policies since it can be determinant for the public acceptance of certain adaptation measures in a context of drought. We provide the empirical estimations for the marginal effects of the two considered impacts: farms' income average and social income distribution. In our estimates we consider crop productivity response to both bio-physical and socio-economic aspects to analyze long term implications on both competitiveness and social disparities. We find disparities in the adaptation priorities depending on the crop and the region analyzed.


Author(s):  
Yuri Chendev ◽  
Maria Lebedeva ◽  
Olga Krymskaya ◽  
Maria Petina

The ongoing climate change requires a quantitative assessment of the impact of weather conditions on the nature and livelihoods of the population. However, to date, the concept of “climate risk” has not been finally defined, and the corresponding terminology is not universally recognized. One manifestation of climate change is an increase in climate variability and extremeness in many regions. At the same time, modern statistics indicate growing worldwide damage from dangerous weather and climate events. The most widely used in climate services is the concept of “Vulnerability index”, which reflects a combination (with or without weighing) of several indicators that indicate the potential damage that climate change can cause to a particular sector of the economy. development of adaptation measures to ensure sustainable development of territories. The main criterion for the vulnerability of the territory from the point of view of meteorological parameters is the extremeness of the basic values: daily air temperature, daily precipitation, maximum wind speed. To fully take into account the possible impacts of extreme climatic conditions on the region’s economy, it is necessary to detail the weather and climate risks taking into account the entire observation network, since significant differences in quantitative assessment are possible. The obtained average regional values of the climate vulnerability indices for the Belgorod Region of the Russian Federation provide 150 points for the winter period, 330 points for the summer season, which indicates the prevalence of extreme weather conditions in the warm season. Most of the territory has a relative influence on climatic phenomena, with the exception of the East and the Southeast Region. Moreover, the eastern part of the region is the most vulnerable in climatic terms.


2021 ◽  
Author(s):  
Antonina Kriuger ◽  
Alexander Reinbold ◽  
Martina Schubert-Frisius ◽  
Jörg Cortekar

<p>Cities are particularly vulnerable to climate change. At the same time, cities change slowly. Accordingly, preparatory measures to adapt to climate change have to be taken urgently. High-performance urban climate models with various applications can form the basis for prospective planning decisions, however, as of today no such model exists that can be easily applied outside of the scientific community. Therefore, the funding program Urban Climate Under Change [UC]<sup>2</sup> aims to further develop the new urban climate model PALM-4U (Parallelized Large-Eddy Simulation Model for Urban Applications) into a practice-oriented and user-friendly product that meets the needs of municipalities and other practical users in addition to scientific research.</p><p>Specifically, the high-performance model PALM-4U allows simulation of entire large cities comprising the area over 1.000 km<sup>2</sup> with a grid size of down to few meters. One of our goals within the project ProPolis is to design and test the practical implementation of PALM-4U in standard and innovative application fields which include thermal comfort (indices like PT, PET, UTCI), cold air balance (source areas, reach and others), local wind comfort (indices derived from medium winds and gusts) as well as dispersion of pollutants.</p><p>In close cooperation with our practice partners, we explore the potential of PALM-4U to support the urban planning processes in each specific application setting. Additionally, with development of the fit for purpose graphic user interface, manuals and trainings we aim to enable practitioners to apply the model for their individual planning questions and adaptation measures.</p><p>In our presentation, we will show an application case of PALM-4U in a major German city. We will investigate the effect of a planned development area on the local climate and the impact of different climate change adaptation measures (such as extensive vs. intensive green roofs). The comparative simulations of the current state and planning scenarios with integrated green and blue infrastructure should provide arguments for the municipal decision making in consideration of climate change aspects in a densely built-up environment, e.g. urban heat stress.</p>


2020 ◽  
Vol 33 (9) ◽  
pp. 3431-3447
Author(s):  
Tobias Spiegl ◽  
Ulrike Langematz

AbstractSatellite measurements over the last three decades show a gradual decrease in solar output, which can be indicative as a precursor to a modern grand solar minimum (GSM). Using a chemistry–climate model, this study investigates the potential of two GSM scenarios with different magnitude to counteract the climate change by projected anthropogenic greenhouse gas (GHG) emissions through the twenty-first century. To identify regions showing enhanced vulnerability to climate change (hot spots) and to estimate their response to a possible modern GSM, a multidimensional metric is applied that accounts for—in addition to changes in mean quantities—seasonal changes in the variability and occurrence of extreme events. We find that a future GSM in the middle of the twenty-first century would temporarily mitigate the global mean impact of anthropogenic climate change by 10%–23% depending on the GSM scenario. A future GSM would, however, not be able to stop anthropogenic global warming. For the GHG-only scenario, our hot-spot analysis suggests that the midlatitudes show a response to rising GHGs below global average, while in the tropics, climate change hot spots with more frequent extreme hot seasons will develop during the twenty-first century. A GSM would reduce the climate change warming in all regions. The GHG-induced warming in Arctic winter would be dampened in a GSM due to the impact of reduced solar irradiance on Arctic sea ice. However, even an extreme GSM could only mitigate a fraction of the tropical hot-spot pattern (up to 24%) in the long term.


2018 ◽  
Vol 33 (2) ◽  
pp. 344-352 ◽  
Author(s):  
Susane Eterna Leite Medeiros ◽  
Raphael Abrahão ◽  
Iker García-Garizábal ◽  
Idmon Melo B.M. Peixoto ◽  
Louise Pereira da Silva

Abstract The state of Paraíba, located in the northeastern region of Brazil, comprises 223 municipalities and covers an area of 56,469 km2. Paraíba is divided into four major mesoregions: Zona da Mata, Agreste, Borborema and Sertão Paraibano. For this study, the Sertão Paraibano mesoregion, a semiarid area, was chosen to understand vulnerability to climate change, taking into account the region’s economic importance for water and energy supply. The Mann-Kendall non-parametric test was applied to evaluate trends in the historical series of monthly, trimestrial, biannual and annual precipitation data. The series utilized corresponded to the period 1912-2012 and were built from data generated by five meteorological stations distributed throughout the mesoregion. These stations are maintained by the Executive Agency for Water Management (AESA) and National Department of Works Against Drought (DNOCS). The results indicated increasing precipitation trends for the Sertão Paraibano mesoregion, especially in the annual evaluation, for the first semester of the year (January to June), for the trimester December-January-February and the month of January, with slopes between 2.67 mm/year and 5.45 mm/year. The results evidenced the need to deepen studies on the influence of climate change in the area, to promote prompt adaptation measures.


2018 ◽  
Vol 9 (4) ◽  
pp. 657-671 ◽  
Author(s):  
Mirko Knežević ◽  
Ljubomir Zivotić ◽  
Nataša Čereković ◽  
Ana Topalović ◽  
Nikola Koković ◽  
...  

Abstract The impact of climate change on potato cultivation in Montenegro was assessed. Three scenarios (A1B, A1Bs and A2) for 2001–2030, 2071–2100 and 2071–2100, respectively, were generated by a regional climate model and compared with the baseline period 1961–1990. The results indicated an increase of temperature during the summer season from 1.3 to 4.8 °C in the mountain region and from 1 to 3.4 °C in the coastal zone. The precipitation decreased between 5 and 50% depending on the scenario, region and season. The changes in temperature and precipitation influenced phenology, yield and water needs. The impact was more pronounced in the coastal areas than in the mountain regions. The growing season was shortened 13.6, 22.9 and 29.7 days for A1B, A1Bs and A2, respectively. The increase of irrigation requirement was 4.0, 19.5 and 7.3 mm for A1B, A1Bs and A2, respectively. For the baseline conditions, yield reduction under rainfed cultivation was lower than 30%. For A1B, A1Bs and A2 scenarios, yield reductions were 31.0 ± 8.2, 36.3 ± 11.6 and 34.1 ± 10.9%, respectively. Possible adaptation measures include shifting of production to the mountain (colder) areas and irrigation application. Rainfed cultivation remains a viable solution when the anticipation of sowing is adopted.


2020 ◽  
Vol 10 (16) ◽  
pp. 5692 ◽  
Author(s):  
Dhriti Kapoor ◽  
Savita Bhardwaj ◽  
Marco Landi ◽  
Arti Sharma ◽  
Muthusamy Ramakrishnan ◽  
...  

Plants are often exposed to unfavorable environmental conditions, for instance abiotic stresses, which dramatically alter distribution of plant species among ecological niches and limit the yields of crop species. Among these, drought stress is one of the most impacting factors which alter seriously the plant physiology, finally leading to the decline of the crop productivity. Drought stress causes in plants a set of morpho-anatomical, physiological and biochemical changes, mainly addressed to limit the loss of water by transpiration with the attempt to increase the plant water use efficiency. The stomata closure, one of the first consistent reactions observed under drought, results in a series of consequent physiological/biochemical adjustments aimed at balancing the photosynthetic process as well as at enhancing the plant defense barriers against drought-promoted stress (e.g., stimulation of antioxidant systems, accumulation of osmolytes and stimulation of aquaporin synthesis), all representing an attempt by the plant to overcome the unfavorable period of limited water availability. In view of the severe changes in water availability imposed by climate change factors and considering the increasing human population, it is therefore of outmost importance to highlight: (i) how plants react to drought; (ii) the mechanisms of tolerance exhibited by some species/cultivars; and (iii) the techniques aimed at increasing the tolerance of crop species against limited water availability. All these aspects are necessary to respond to the continuously increasing demand for food, which unfortunately parallels the loss of arable land due to changes in rainfall dynamics and prolonged period of drought provoked by climate change factors. This review summarizes the most updated findings on the impact of drought stress on plant morphological, biochemical and physiological features and highlights plant mechanisms of tolerance which could be exploited to increase the plant capability to survive under limited water availability. In addition, possible applicative strategies to help the plant in counteracting unfavorable drought periods are also discussed.


Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 190
Author(s):  
Robert Ugochukwu Onyeneke ◽  
Chukwuemeka Chinonso Emenekwe ◽  
Jane Onuabuchi Munonye ◽  
Chinyere Augusta Nwajiuba ◽  
Uwazie Iyke Uwazie ◽  
...  

An in-depth understanding of the impact of vulnerability on livelihoods and food security is important in deploying effective adaptation actions. The Nigerian agricultural sector is dominated by rainfed and non-homogenous smallholder farming systems. A number of climate change risk studies have emerged in the last decade. However, little attention has been given to vulnerability assessments and the operationalization of vulnerability. To highlight this shortcoming, this study systematically reviewed climate-change-focused vulnerability assessments in the agricultural sector by evaluating (1) variation in climate variables in Nigeria over time; (2) the state of climate change vulnerability assessment in Nigerian agriculture; (3) the theoretical foundations, operationalization approaches, and frameworks of vulnerability assessments in Nigeria; (4) the methods currently used in vulnerability assessments; and (5) lessons learned from the vulnerability studies. We used a linear trend of climatic data spanning over a period of 56 years (1961–2016) obtained from the Nigerian Meteorological Agency and the Climate Research Unit of the University of East Anglia, United Kingdom, along with a systematic review of literature to achieve the objectives. The analysis indicates a significant and positive correlation between temperature and time in all major agro-ecological zones. For precipitation, we found a non-significant correlation between precipitation in the Sahel, Sudan, and Guinea Savanna zones with time, while the other zones recorded positive but significant associations between precipitation and time. The systematic review findings indicate no clear progress in publications focused specifically on vulnerability assessments in the Nigerian agricultural sector. There has been progress recently in applying frameworks and methods. However, there are important issues that require addressing in vulnerability assessments, including low consideration for indigenous knowledge and experience, unclear operationalization of vulnerability, non-standardization of vulnerability measures, and inadequacy of current assessments supporting decision making.


Sign in / Sign up

Export Citation Format

Share Document