scholarly journals Hydroclimatic variability and change in the Chesapeake Bay Watershed

2016 ◽  
Vol 8 (2) ◽  
pp. 254-273 ◽  
Author(s):  
Chounghyun Seong ◽  
Venkataramana Sridhar

The Chesapeake Bay (CB) Watershed is undergoing changes in climate, hydrology, and land use. The assessment of hydroclimatic impacts is important for both water quantity and quality management. This study evaluated the hydroclimatic changes using the Coupled Model Intercomparison Project 5 (CMIP5) data which provided statistically downscaled daily precipitation and temperature. An increase of 3.0 to 5.2 °C in temperature was projected between 2070 and 2099 when compared with the baseline period of 1970–1999. However, precipitation projections showed a modest increase with an average of 5.2 and 8.4% between 2070 and 2099. The northern part of the CB Watershed was expected to be wetter and warmer than the southern region. The average changes in flow were projected between −12 and 6% and −22 to 5% between 2070 and 2099, respectively, under two scenarios. Minimum changes in winter and highest flow reduction in fall with a high degree of variability among the ensemble members was expected. Greater decrease in flows in the northern region of the CB Watershed was projected. Despite the wetter future projections at the end of the century and uncertainties in our evapotranspiration (ET) estimation, reductions in the land surface runoff partly were attributed to increased ET.

Author(s):  
Isaac Kwesi Nooni ◽  
Daniel Fiifi T. Hagan ◽  
Guojie Wang ◽  
Waheed Ullah ◽  
Jiao Lu ◽  
...  

The main goal of this study was to assess the interannual variations and spatial patterns of projected changes in simulated evapotranspiration (ET) in the 21st century over continental Africa based on the latest Shared Socioeconomic Pathways and the Representative Concentration Pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) provided by the France Centre National de Recherches Météorologiques (CNRM-CM) model in the Sixth Phase of Coupled Model Intercomparison Project (CMIP6) framework. The projected spatial and temporal changes were computed for three time slices: 2020–2039 (near future), 2040–2069 (mid-century), and 2080–2099 (end-of-the-century), relative to the baseline period (1995–2014). The results show that the spatial pattern of the projected ET was not uniform and varied across the climate region and under the SSP-RCPs scenarios. Although the trends varied, they were statistically significant for all SSP-RCPs. The SSP5-8.5 and SSP3-7.0 projected higher ET seasonality than SSP1-2.6 and SSP2-4.5. In general, we suggest the need for modelers and forecasters to pay more attention to changes in the simulated ET and their impact on extreme events. The findings provide useful information for water resources managers to develop specific measures to mitigate extreme events in the regions most affected by possible changes in the region’s climate. However, readers are advised to treat the results with caution as they are based on a single GCM model. Further research on multi-model ensembles (as more models’ outputs become available) and possible key drivers may provide additional information on CMIP6 ET projections in the region.


2021 ◽  
pp. 1-61
Author(s):  
Jesse Norris ◽  
Alex Hall ◽  
J. David Neelin ◽  
Chad W. Thackeray ◽  
Di Chen

AbstractDaily and sub-daily precipitation extremes in historical Coupled-Model-Intercomparison-Project-Phase-6 (CMIP6) simulations are evaluated against satellite-based observational estimates. Extremes are defined as the precipitation amount exceeded every x years, ranging from 0.01–10, encompassing the rarest events that are detectable in the observational record without noisy results. With increasing temporal resolution there is an increased discrepancy between models and observations: for daily extremes the multi-model median underestimates the highest percentiles by about a third, and for 3-hourly extremes by about 75% in the tropics. The novelty of the current study is that, to understand the model spread, we evaluate the 3-D structure of the atmosphere when extremes occur. In midlatitudes, where extremes are simulated predominantly explicitly, the intuitive relationship exists whereby higher-resolution models produce larger extremes (r=–0.49), via greater vertical velocity. In the tropics, the convective fraction (the fraction of precipitation simulated directly from the convective scheme) is more relevant. For models below 60% convective fraction, precipitation amount decreases with convective fraction (r=–0.63), but above 75% convective fraction, this relationship breaks down. In the lower-convective-fraction models, there is more moisture in the lower troposphere, closer to saturation. In the higher-convective-fraction models, there is deeper convection and higher cloud tops, which appears to be more physical. Thus, the low-convective models are mostly closer to the observations of extreme precipitation in the tropics, but likely for the wrong reasons. These inter-model differences in the environment in which extremes are simulated hold clues into how parameterizations could be modified in general circulation models to produce more credible 21st-Century projections.


2013 ◽  
Vol 26 (17) ◽  
pp. 6215-6237 ◽  
Author(s):  
Zaitao Pan ◽  
Xiaodong Liu ◽  
Sanjiv Kumar ◽  
Zhiqiu Gao ◽  
James Kinter

Abstract Some parts of the United States, especially the southeastern and central portion, cooled by up to 2°C during the twentieth century, while the global mean temperature rose by 0.6°C (0.76°C from 1901 to 2006). Studies have suggested that the Pacific decadal oscillation (PDO) and the Atlantic multidecadal oscillation (AMO) may be responsible for this cooling, termed the “warming hole” (WH), while other works reported that regional-scale processes such as the low-level jet and evapotranspiration contribute to the abnormity. In phase 3 of the Coupled Model Intercomparison Project (CMIP3), only a few of the 53 simulations could reproduce the cooling. This study analyzes newly available simulations in experiments from phase 5 of the Coupled Model Intercomparison Project (CMIP5) from 28 models, totaling 175 ensemble members. It was found that 1) only 19 out of 100 all-forcing historical ensemble members simulated negative temperature trend (cooling) over the southeast United States, with 99 members underpredicting the cooling rate in the region; 2) the missing of cooling in the models is likely due to the poor performance in simulating the spatial pattern of the cooling rather than the temporal variation, as indicated by a larger temporal correlation coefficient than spatial one between the observation and simulations; 3) the simulations with greenhouse gas (GHG) forcing only produced strong warming in the central United States that may have compensated the cooling; and 4) the all-forcing historical experiment compared with the natural-forcing-only experiment showed a well-defined WH in the central United States, suggesting that land surface processes, among others, could have contributed to the cooling in the twentieth century.


2011 ◽  
Vol 4 (4) ◽  
pp. 845-872 ◽  
Author(s):  
S. Watanabe ◽  
T. Hajima ◽  
K. Sudo ◽  
T. Nagashima ◽  
T. Takemura ◽  
...  

Abstract. An earth system model (MIROC-ESM 2010) is fully described in terms of each model component and their interactions. Results for the CMIP5 (Coupled Model Intercomparison Project phase 5) historical simulation are presented to demonstrate the model's performance from several perspectives: atmosphere, ocean, sea-ice, land-surface, ocean and terrestrial biogeochemistry, and atmospheric chemistry and aerosols. An atmospheric chemistry coupled version of MIROC-ESM (MIROC-ESM-CHEM 2010) reasonably reproduces transient variations in surface air temperatures for the period 1850–2005, as well as the present-day climatology for the zonal-mean zonal winds and temperatures from the surface to the mesosphere. The historical evolution and global distribution of column ozone and the amount of tropospheric aerosols are reasonably simulated in the model based on the Representative Concentration Pathways' (RCP) historical emissions of these precursors. The simulated distributions of the terrestrial and marine biogeochemistry parameters agree with recent observations, which is encouraging to use the model for future global change projections.


2018 ◽  
Vol 8 (1) ◽  
pp. 13-24 ◽  
Author(s):  
MBOTE BETH WAMBUI ◽  
ALFRED OPERE ◽  
JOHN M. GITHAIGA ◽  
FREDRICK K. KARANJA

Wambui MB, Opere A, Githaiga MJ, Karanja FK. 2017. Assessing the impacts of climate variability and climate change on biodiversity in Lake Nakuru, Kenya. Bonorowo Wetlands 1: 13-24. This study evaluates the impacts of the raised water levels and the flooding of Lake Nakuru and its surrounding areas on biodiversity, specifically, the phytoplankton and lesser flamingo communities, due to climate change and climate variability. The study was to review and analyze noticed climatic records from 2000 to 2014. Several methods were used to ascertain the past and current trends of climatic parameters (temperature, rainfall and evaporation), and also the physicochemical characteristics of Lake Nakuru (conductivity, phytoplankton, lesser flamingos and the lake depth). These included time series analysis, and trend analysis, so the Pearson’s correlation analysis was used to show a relationship between the alterations in lake conductivity to alterations in population estimates of the lesser flamingos and the phytoplankton. Data set extracted from the Coupled Model Intercomparison Project Phase 5 (CMIP5) (IPCC Fifth Assessment Report (AR5) Atlas subset) models were subjected to time series analysis method where the future climate scenarios of near surface temperature, rainfall and evaporation were plotted for the period 2017 to 2100 (projection) for RCP2.6 and RCP8.5 relative to the baseline period 1971 to 2000 in Lake Nakuru were analysed. The results were used to evaluate the impact of climate change on the lesser flamingos and phytoplankton abundance. It was noticed that there was a raise in the mean annual rainfall during the study period (2009 to 2014) which brought the increment in the lake’s surface area from a low area of 31.8 km² in January 2010 to a high of 54.7 km² in Sept 2013, indicating an increment of 22.9 km² (71.92% surface area increment). Mean conductivity of the lake also lessened leading to the loss of phytoplankton on which flamingos feed making them to migrate. A strong positive correlation between conductivity and the lesser flamingo population was noticed signifying that low conductivity affects the growth of phytoplankton and since the lesser flamingos depend on the phytoplankton for their feed, this subsequently revealed that the phytoplankton density could be a notable predictor of the lesser flamingo occurrence in Lake Nakuru. There was also a strong positive correlation noticed between phytoplankton and the lesser flamingo population which confirms that feed availability is a key determining factor of the lesser flamingo distribution in the lake. It is projected that there would be an increment in temperatures, rainfall and evaporation for the period 2017 to 2100 under RCP2.6 and RCP8.5 relative to the baseline period 1971 to 2000 obtained from the Coupled Model Intercomparison Project phase 5 (CMIP5) multi-model ensemble. As a result, it is expected that the lake will further increment in surface area and depth by the year 2100 due to increased rainfall thereby affecting the populations of the lesser flamingos and phytoplankton, as the physicochemical factors of the lake will alter as well during the projected period.


2019 ◽  
Author(s):  
Andrew J. Wiltshire ◽  
Carolina Duran Rojas ◽  
John Edwards ◽  
Nicola Gedney ◽  
Anna B. Harper ◽  
...  

Abstract. We present the latest global land configuration of the Joint UK Land Environment Simulator (JULES) model as used in the latest international coupled model intercomparison project (CMIP6). The configuration is defined by the combination of switches, parameter values and ancillary data, which we provide alongside a set of historical forcing data that defines the experimental setup. In addition, we provide a standardised modelling system that runs on the NERC JASMIN cluster accessible to all with links to JULES. This is provided so that users can test and evaluate their own science against the standard configuration to promote community engagement in the development of land surface modelling capability through JULES. It is intended that JULES configurations should be independent of the underlying code base and thus they will be available at the latest release of the JULES code. This means that different code releases will produce scientifically comparable results for a given configuration version. Versioning is therefore determined by the configuration as opposed to the underlying code base.


2020 ◽  
Author(s):  
Peng Ji ◽  
Xing Yuan ◽  
Feng Ma ◽  
Ming Pan

Abstract. Serving source water for the Yellow, Yangtze and Lancang-Mekong rivers, the Sanjiangyuan region concerns ~ 700 million people over its downstream areas. Recent research suggests that the Sanjiangyuan region will become wetter in a warming future, but future changes in streamflow extremes remain unclear due to the complex hydrological processes over high-land areas and limited knowledge of the influences of land cover change and CO2 physiological forcing. Based on high resolution land surface modeling during 1979~2100 driven by the climate and ecological projections from 11 newly released Coupled Model Intercomparison Project Phase 6 (CMIP6) climate models, we show that different accelerating rates of precipitation and evapotranspiration at 1.5 °C global warming level induce 55 % more dry extremes over Yellow river and 138 % more wet extremes over Yangtze river headwaters compared with the reference period (1985~2014). An additional 0.5 °C warming leads to a further nonlinear and more significant increase for both dry extremes over Yellow river (22 %) and wet extremes over Yangtze river (64 %). The combined role of CO2 physiological forcing and vegetation greening, which used to be neglected in hydrological projections, is found to alleviate dry extremes at 1.5 and 2.0 °C warming levels but to intensify dry extremes at 3.0 °C warming level. Moreover, vegetation greening contributes half of the differences between 1.5 and 3.0 °C warming levels. This study emphasizes the importance of ecological processes in determining future changes in streamflow extremes, and suggests a dry gets drier, wet gets wetter condition over headwaters.


2021 ◽  
pp. 1-49
Author(s):  
So-Won Park ◽  
Jong-Seong Kug ◽  
Sang-Yoon Jun ◽  
Su-Jong Jeong ◽  
Jin-Soo Kim

AbstractStomatal closure is a major physiological response to the increasing atmospheric carbon dioxide (CO2), which can lead to surface warming by regulating surface energy fluxes—a phenomenon known as CO2 physiological forcing. The magnitude of land surface warming caused by physiological forcing is substantial and varies across models. Here we assess the continental warming response to CO2 physiological forcing and quantify the resultant climate feedback using carbon–climate simulations from phases 5 and 6 of the Coupled Model Intercomparison Project, with a focus on identifying the cause of inter-model spread. It is demonstrated that the continental (40°–70°N) warming response to the physiological forcing in summer (~0.55 K) is amplified primarily due to cloud feedback (~1.05 K), whereas the other climate feedbacks, ranged from –0.57 K to 0.20 K, show relatively minor contributions. In addition, the strength of cloud feedback varies considerably across models, which plays a primary role in leading large diversity of the continental warming response to the physiological forcing.


2011 ◽  
Vol 4 (2) ◽  
pp. 1063-1128 ◽  
Author(s):  
S. Watanabe ◽  
T. Hajima ◽  
K. Sudo ◽  
T. Nagashima ◽  
T. Takemura ◽  
...  

Abstract. An earth system model (MIROC-ESM) is fully described in terms of each model component and their interactions. Results for the CMIP5 (Coupled Model Intercomparison Project phase 5) historical simulation are presented to demonstrate the model's performance from several perspectives: atmosphere, ocean, sea-ice, land-surface, ocean and terrestrial biogeochemistry, and atmospheric chemistry and aerosols. An atmospheric chemistry coupled version of MIROC-ESM (MIROC-ESM-CHEM) reasonably reproduces transient variations in surface air temperatures for the period 1850–2005, as well as the present-day climatology for the zonal-mean zonal winds and temperatures from the surface to the mesosphere. The historical evolution and global distribution of column ozone and the amount of tropospheric aerosols are reasonably simulated in the model based on the Representative Concentration Pathways' (RCP) historical emissions of these precursors. The simulated distributions of the terrestrial and marine biogeochemistry parameters agree with recent observations, which is encouraging to use the model for future global change projections.


2020 ◽  
Vol 33 (22) ◽  
pp. 9817-9834
Author(s):  
Laurie Agel ◽  
Mathew Barlow ◽  
Joseph Polonia ◽  
David Coe

AbstractHistorical simulations from 14 models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5) are evaluated for their ability to reproduce observed precipitation in the northeastern United States and its associated circulation, with particular emphasis on extreme (top 1%) precipitation. The models are compared to observations in terms of the spatial variations of extreme precipitation, seasonal cycles of precipitation and extreme precipitation frequency and intensity, and extreme precipitation circulation regimes. The circulation regimes are identified using k-means clustering of 500-hPa geopotential heights on extreme precipitation days, in both observations and in the models. While all models capture an observed northwest-to-southeast gradient of precipitation intensity (reflected in the top 1% threshold), there are substantial differences from observations in the magnitude of the gradient. These differences tend to be more substantial for lower-resolution models. However, regardless of resolution, and despite a bias toward too-frequent precipitation, many of the models capture the seasonality of observed daily precipitation intensity, and the approximate magnitude and seasonality of observed extreme precipitation intensity. Many of the simulated extreme precipitation circulation patterns are visually similar to the set of observed patterns. However, the location and magnitude of specific troughs and ridges within the patterns, as well as the seasonality of the patterns, may differ substantially from the observed corresponding patterns. A series of metrics is developed based on the observed regional characteristics to facilitate comparison between models.


Sign in / Sign up

Export Citation Format

Share Document