scholarly journals Sunlight inactivation of Campylobacter jejuni and Salmonella enterica, compared with Escherichia coli, in seawater and river water

2007 ◽  
Vol 5 (3) ◽  
pp. 357-365 ◽  
Author(s):  
Lester Sinton ◽  
Carollyn Hall ◽  
Robin Braithwaite

The inactivation of Campylobacter jejuni and Salmonella enterica, compared with Escherichia coli, was determined in 100 l chambers of seawater and river water located at an outdoor site. The chambers (paired with dark controls) were seeded with waste stabilization pond effluent and laboratory-cultured pathogens, and exposed to sunlight in summer and winter experiments. All sunlight inactivation (kS) rates, as a function of cumulative global solar radiation (insolation), were far higher than the corresponding dark (kD) rates, with a ranking (and average kS rates for seawater and river water, respectively) of: C. jejuni (3.23; 2.34)>S. enterica (0.51; 0.37)>E. coli (0.34; 0.26). All the T90 (time to 90% inactivation) values were higher in winter than in summer, but there was far greater similarity between the summer and winter S90 (insolation needed for 90% inactivation) values. The rapid inactivation of C. jejuni was attributed to a high susceptibility to photooxidative damage. The results suggest that, in sunlight-exposed waters, E. coli will be a more conservative indicator for C. jejuni than for S. enterica, and C. jejuni transmission as a pathogenic agent is less likely than for S. enterica.

2002 ◽  
Vol 68 (3) ◽  
pp. 1122-1131 ◽  
Author(s):  
Lester W. Sinton ◽  
Carollyn H. Hall ◽  
Philippa A. Lynch ◽  
Robert J. Davies-Colley

ABSTRACT Sunlight inactivation in fresh (river) water of fecal coliforms, enterococci, Escherichia coli, somatic coliphages, and F-RNA phages from waste stabilization pond (WSP) effluent was compared. Ten experiments were conducted outdoors in 300-liter chambers, held at 14°C (mean river water temperature). Sunlight inactivation (k S) rates, as a function of cumulative global solar radiation (insolation), were all more than 10 times higher than the corresponding dark inactivation (k D) rates in enclosed (control) chambers. The overall k S ranking (from greatest to least inactivation) was as follows: enterococci > fecal coliforms ≥ E. coli > somatic coliphages > F-RNA phages. In winter, fecal coliform and enterococci inactivation rates were similar but, in summer, enterococci were inactivated far more rapidly. In four experiments that included freshwater-raw sewage mixtures, enterococci survived longer than fecal coliforms (a pattern opposite to that observed with the WSP effluent), but there was little difference in phage inactivation between effluents. In two experiments which included simulated estuarine water and seawater, sunlight inactivation of all of the indicators increased with increasing salinity. Inactivation rates in freshwater, as seen under different optical filters, decreased with the increase in the spectral cutoff (50% light transmission) wavelength. The enterococci and F-RNA phages were inactivated by a wide range of wavelengths, suggesting photooxidative damage. Inactivation of fecal coliforms and somatic coliphages was mainly by shorter (UV-B) wavelengths, a result consistent with photobiological damage. Fecal coliform repair mechanisms appear to be activated in WSPs, and the surviving cells exhibit greater sunlight resistance in natural waters than those from raw sewage. In contrast, enterococci appear to suffer photooxidative damage in WSPs, rendering them susceptible to further photooxidative damage after discharge. This suggests that they are unsuitable as indicators of WSP effluent discharges to natural waters. Although somatic coliphages are more sunlight resistant than the other indicators in seawater, F-RNA phages are the most resistant in freshwater, where they may thus better represent enteric virus survival.


2019 ◽  
Vol 85 ◽  
pp. 06013
Author(s):  
Adel Faskol ◽  
Gabriel Racoviţeanu

The most important determinant when recycling of wastewater for agriculture is that related to public health. This paper investigates the removal of Escherichia Coli/coliform in the waste stabilization pond as simulation as assessing of mitigating health risk. A case study in climatic conditions of Libya. As a result of a computer program based waste stabilization pond design based on parameter uncertainty and 10,000-trial Monte Carlo simulations, were developed for a series of anaerobic, facultative and maturation ponds to produce on a 95%-ile value <1000 E. Coli per 100 ml. While a number of influent of E. Coli bacteria was (156.732×106 E. Coli /100ml). Where it decreased was a number of the effluent (10 E. Coli /100ml). Where the efficiency of removal E. Coli bacteria was (99.999 %). And the overall hydraulic retention time it took 89.548 days in the anaerobic pond, facultative pond, first maturation pond and twelve of the subsequent maturation ponds. To satisfy practice 2006 WHO guidelines for the safe use of wastewater in agriculture.


2002 ◽  
Vol 65 (10) ◽  
pp. 1545-1560 ◽  
Author(s):  
MENDEL FRIEDMAN ◽  
PHILIP R. HENIKA ◽  
ROBERT E. MANDRELL

An improved method of sample preparation was used in a microplate assay to evaluate the bactericidal activity levels of 96 essential oils and 23 oil compounds against Campylobacter jejuni, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica obtained from food and clinical sources. Bactericidal activity (BA50) was defined as the percentage of the sample in the assay mixture that resulted in a 50% decrease in CFU relative to a buffer control. Twenty-seven oils and 12 compounds were active against all four species of bacteria. The oils that were most active against C. jejuni (with BA50 values ranging from 0.003 to 0.009) were marigold, ginger root, jasmine, patchouli, gardenia, cedarwood, carrot seed, celery seed, mugwort, spikenard, and orange bitter oils; those that were most active against E. coli (with BA50 values ranging from 0.046 to 0.14) were oregano, thyme, cinnamon, palmarosa, bay leaf, clove bud, lemon grass, and allspice oils; those that were most active against L. monocytogenes (with BA50 values ranging from 0.057 to 0.092) were gardenia, cedarwood, bay leaf, clove bud, oregano, cinnamon, allspice, thyme, and patchouli oils; and those that were most active against S. enterica (with BA50 values ranging from 0.045 to 0.14) were thyme, oregano, cinnamon, clove bud, allspice, bay leaf, palmarosa, and marjoram oils. The oil compounds that were most active against C. jejuni (with BA50 values ranging from 0.003 to 0.034) were cinnamaldehyde, estragole, carvacrol, benzaldehyde, citral, thymol, eugenol, perillaldehyde, carvone R, and geranyl acetate; those that were most active against E. coli (with BA50 values ranging from 0.057 to 0.28) were carvacrol, cinnamaldehyde, thymol, eugenol, salicylaldehyde, geraniol, isoeugenol, citral, perillaldehyde, and estragole; those that were most active against L. monocytogenes (with BA50 values ranging from 0.019 to 0.43) were cinnamaldehyde, eugenol, thymol, carvacrol, citral, geraniol, perillaldehyde, carvone S, estragole, and salicylaldehyde; and those that were most active against S. enterica (with BA50 values ranging from 0.034 to 0.21) were thymol, cinnamaldehyde, carvacrol, eugenol, salicylaldehyde, geraniol, isoeugenol, terpineol, perillaldehyde, and estragole. The possible significance of these results with regard to food microbiology is discussed.


2018 ◽  
Vol 41 (4) ◽  
pp. 353-363
Author(s):  
Alberto J. Valencia-Botin ◽  
Melesio Gutiérrez-Lomelí ◽  
Juan A. Morales-Del-Río ◽  
Pedro J. Guerrero-Medina ◽  
Miguel A. Robles-García ◽  
...  

Actualmente existe la necesidad de hacer frente al problema de la resistencia a los antibióticos y al uso indiscriminado de fungicidas químicos en la agricultura. El objetivo de este trabajo fue evaluar el efecto inhibitorio de extractos acuosos, metanólicos, acetónicos y hexánicos de hoja y tallo de Vitex mollis Kunth (Lamiaceae) contra diferentes bacterias (Escherichia coli, Micrococcus luteus, Salmonella enterica y Staphylococcus aureus) y especies del hongo Fusarium (F. verticillioides, F. oxysporum, F. tapsinum y F. oxysporum f.sp. lycopersici) de importancia en la salud y en la agricultura, así como determinar su composición química general. Se determinaron las concentraciones inhibitorias mínimas (CIM) de todos los extractos por la técnica de microdilución, excepto del hexánico, que no presentó inhibición en las bacterias estudiadas. S. enterica fue la bacteria que mostró mayor sensibilidad al extracto metanólico de tallo (CIM = 28 μg mL-1), le siguieron M. luteus (CIM = 32 μg mL-1), S. aureus (CIM = 75 μg mL-1) y E. coli (CIM = 80 μg mL- 1). Los extractos metanólicos y acuosos de tallo presentaron mayor porcentaje de inhibición contra los diferentes tipos de Fusarium evaluados por el método de dilución en agar. Los extractos de V. mollis inhibieron a F. verticillioides entre 62 y 91 % con 120 μg mL-1 de extracto. El orden de las especies de hongos inhibidas por los extractos fue: F. verticillioides > F. oxysporum > F. tapsinum > F. oxysporum f.sp. lycopersici. La composición química de las especies se determinó mediante pruebas para fenoles, taninos, flavonoides, triterpenos, alcaloides, cumarinas y saponinas. Ninguno de los extractos presentó alcaloides y saponinas. Los fenoles (37.1 mg EAG/g muestra seca) y flavonoides (26.8 mg EQ/g muestra seca) fueron los compuestos mayoritarios en los extractos metanólicos y acuosos. En conclusión, se requieren cantidades muy pequeñas de extracto para la inhibición de bacterias y de Fusarium; por lo tanto, V. mollis puede ser considerada una fuente de metabolitos para este fin y en la agricultura como control alternativo dentro de un manejo integrado de enfermedades.


2018 ◽  
Vol 38 (11) ◽  
pp. 2150-2154 ◽  
Author(s):  
Ruben V. Horn ◽  
Windleyanne G.A. Bezerra ◽  
Elisângela S. Lopes ◽  
Régis S.C. Teixeira ◽  
Isaac N.G. Silva ◽  
...  

ABSTRACT: This study aimed to isolate Escherichia coli and Salmonella enterica from captured feral pigeons in Fortaleza, Brazil, and, in addition to evaluate the antimicrobial susceptibility profiles and diagnose diarrheagenic E. coli strains. Pigeons were captured in four public locations in Fortaleza with three techniques. Individual cloacal swab samples were collected and submitted to bacterial isolation, biochemical identification and antimicrobial susceptibility test. Disk diffusion technique was used with twelve antibiotics. E. coli strains were submitted to DNA extraction followed by PCR to diagnose five diarrheagenic pathotypes. A total of 124 birds were captured. One bird was positive for Salmonella enterica (0.81%) and 121 (97.58%) were positive for E. coli. Among these, 110 isolates were submitted to antimicrobial susceptibility test and 28.18% (31/110) presented resistance to at least one antibiotic. Resistance to azithromycin was the most frequent (21.82%), followed by tetracycline (10.91%) and sulfamethoxazole with trimethoprim (8.9%). Multidrug resistance, calculated as a resistance to at least 3 antimicrobial classes, was identified in 3.64% (4/110) of strains. The maximum number of antimicrobial classes to which one strain was resistant was seven. Results demonstrated nine different resistance profiles and the most frequent was tetracycline and sulfamethoxazole with trimethoprim (4 strains), followed by chloramphenicol, azithromycin, tetracycline and sulfamethoxazole with trimethoprim (3 strains). Amoxicillin with clavulanic acid and tobramycin presented lowest levels of antimicrobial resistance, to which none of the tested strains were resistant. A single strain was positive for the eltB gene, which is a diagnostic tool to identify the Enterotoxigenic E. coli (ETEC) pathotype. None of the other investigated genes (stx1, stx2, estA, eaeA, ipaH, aatA and aaiC) were identified. The single isolate of S. enterica was a rough strain of Salmonella enterica subsp. enterica, but serotype identification was not possible. However, this isolate presented resistance to amoxicillin, amoxicillin with clavulanic acid, tetracycline and sulfamethoxazole with trimethoprim. Therefore, captured feral pigeons of Fortaleza presented a low prevalence of S. enterica and diarrheagenic E. coli. Considering the investigated pathogens, our results suggest a good health status and a low public health risk. However, important antimicrobial resistance profiles were identified.


2014 ◽  
Vol 81 (2) ◽  
pp. 713-725 ◽  
Author(s):  
John W. Schmidt ◽  
Getahun E. Agga ◽  
Joseph M. Bosilevac ◽  
Dayna M. Brichta-Harhay ◽  
Steven D. Shackelford ◽  
...  

ABSTRACTSpecific concerns have been raised that third-generation cephalosporin-resistant (3GCr)Escherichia coli, trimethoprim-sulfamethoxazole-resistant (COTr)E. coli, 3GCrSalmonella enterica, and nalidixic acid-resistant (NALr)S. entericamay be present in cattle production environments, persist through beef processing, and contaminate final products. The prevalences and concentrations of these organisms were determined in feces and hides (at feedlot and processing plant), pre-evisceration carcasses, and final carcasses from three lots of fed cattle (n= 184). The prevalences and concentrations were further determined for strip loins from 103 of the carcasses. 3GCrSalmonellawas detected on 7.6% of hides during processing and was not detected on the final carcasses or strip loins. NALrS. entericawas detected on only one hide. 3GCrE. coliand COTrE. coliwere detected on 100.0% of hides during processing. Concentrations of 3GCrE. coliand COTrE. colion hides were correlated with pre-evisceration carcass contamination. 3GCrE. coliand COTrE. coliwere each detected on only 0.5% of final carcasses and were not detected on strip loins. Five hundred and 42 isolates were screened for extraintestinal pathogenicE. coli(ExPEC) virulence-associated markers. Only two COTrE. coliisolates from hides were ExPEC, indicating that fed cattle products are not a significant source of ExPEC causing human urinary tract infections. The very low prevalences of these organisms on final carcasses and their absence on strip loins demonstrate that current sanitary dressing procedures and processing interventions are effective against antimicrobial-resistant bacteria.


2012 ◽  
Vol 75 (3) ◽  
pp. 497-503 ◽  
Author(s):  
YANG LIU ◽  
MIRKO BETTI ◽  
MICHAEL G. GÄNZLE

This study evaluated the high pressure inactivation of Campylobacter jejuni, Escherichia coli, and poultry meat spoilage organisms. All treatments were performed in aseptically prepared minced poultry meat. Treatment of 19 strains of C. jejuni at 300 MPa and 30°C revealed a large variation of pressure resistance. The recovery of pressure-induced sublethally injured C. jejuni depended on the availability of iron. The addition of iron content to enumeration media was required for resuscitation of sublethally injured cells. Survival of C. jejuni during storage of refrigerated poultry meat was analyzed in fresh and pressure-treated poultry meat, and in the presence or absence of spoilage microbiota. The presence of spoilage microbiota did not significantly influence the survival of C. jejuni. Pressure treatment at 400 MPa and 40°C reduced cell counts of Brochothrix thermosphacta, Carnobacterium divergens, C. jejuni, and Pseudomonas fluorescens to levels below the detection limit. Cell counts of E. coli AW1.7, however, were reduced by only 3.5 log (CFU/g) and remained stable during subsequent refrigerated storage. The resistance to treatment at 600 MPa and 40°Cof E. coli AW1.7 was compared with Salmonella enterica, Shiga toxin–producing E. coli and nonpathogenic E. coli strains, and Staphylococcus spp. Cell counts of all organisms except E. coli AW 1.7 were reduced by more than 6 log CFU/g. Cell counts of E. coli AW1.7 were reduced by 4.5 log CFU/g only. Moreover, the ability of E. coli AW1.7 to resist pressure was comparable to the pressure-resistant mutant E. coli LMM1030. Our results indicate that preservation of fresh meat requires a combination of high pressure with high temperature (40 to 60°C) or other antimicrobial hurdles.


2018 ◽  
Vol 19 (0) ◽  
Author(s):  
Priscila Alves Dias ◽  
Daiani Teixeira Silva ◽  
Cláudio Dias Timm

Resumo Kefir é o produto da fermentação do leite pelos grãos de kefir. Esses grãos contêm uma mistura simbiótica de bactérias e leveduras imersas em uma matriz composta de polissacarídeos e proteínas. Muitos benefícios à saúde humana têm sido atribuídos ao kefir, incluindo atividade antimicrobiana contra bactérias Gram positivas e Gram negativas. A atividade antimicrobiana de 60 microrganismos isolados de grãos de kefir, frente à Escherichia coli O157:H7, Salmonella enterica subsp. enterica sorotipos Typhimurium e Enteritidis, Staphylococcus aureus e Listeria monocytogenes, foi estudada através do teste do antagonismo. A ação antimicrobiana dos sobrenadantes das bactérias ácido-lácticas que apresentaram atividade no teste do antagonismo foi testada. O experimento foi repetido usando sobrenadantes com pH neutralizado. Salmonella Typhimurium e Enteritidis sobreviveram por 24 horas no kefir em fermentação. E. coli O157:H7, S. aureus e L. monocytogenes foram recuperados até 72 horas após o início da fermentação. Todos os isolados apresentaram atividade antimicrobiana contra pelo menos um dos patógenos usados no teste do antagonismo. Sobrenadantes de 25 isolados apresentaram atividade inibitória e três mantiveram essa atividade com pH neutralizado. As bactérias patogênicas estudadas sobreviveram por tempo superior àquele normalmente utilizado para a fermentação do kefir artesanal, o que caracteriza perigo em potencial para o consumidor quando a matéria-prima não apresentar segurança sanitária. Lactobacillus isolados de grãos de kefir apresentam atividade antimicrobiana contra cepas de E. coli O157:H7, Salmonella sorotipos Typhimurium e Enteritidis, S. aureus e L. monocytogenes além daquela exercida pela diminuição do pH.


2009 ◽  
Vol 75 (20) ◽  
pp. 6622-6625 ◽  
Author(s):  
Douglas L. Rank ◽  
Mahdi A. Saeed ◽  
Peter M. Muriana

ABSTRACT The gene for the Salmonella enterica serovar Enteritidis fimbrial protein SefA was cloned into an Escherichia coli surface expression vector and confirmed by Western blot assay. E. coli clones expressing SefA attached to avian ovary granulosa cells and HEp-2 cells, providing evidence for the involvement of SefA in the ability of Salmonella to attach to eukaryotic cells.


Sign in / Sign up

Export Citation Format

Share Document