The performance of LID (low impact development) practices at different locations with an urban drainage system: a case study of Longyan, China

2015 ◽  
Vol 10 (4) ◽  
pp. 739-746 ◽  
Author(s):  
Peng Li ◽  
Jun Liu ◽  
Rui Fu ◽  
Xin Liu ◽  
Yanyan Zhou ◽  
...  

Urbanization has strongly changed the condition of the land surface and therefore rainfall runoff varies greatly. Peak flood flow and flood volumes increase with runoff volume. Low Impact Development (LID) is a sustainable concept that minimizes the effects of urbanization to maintain natural hydrological function in urban cities and has therefore gained increasing attention. This paper studies the effects of low impact development measures on the reduction of runoff generation and peak runoff at different locations in Longyan, China. The study was conducted using the SWMM model (5.1.006) with a newly developed LID module. In this study, the LID module, which includes rain gardens, green roofs, permeable pavements, and rain barrels, was used to simulate different layout scenarios and different rainfall patterns. The results show that the performance of a certain LID is similar at different locations but the reduction effect on runoff and peak flow varies. Rain gardens and permeable pavements perform a similar degree of reduction under different durations, but the peak flow reduction by rain barrels and green roofs varies greatly. Further research should focus on composite LID applications in other locations, combination with the local pipe network layout, which will ensure that the implemented system will be aesthetically pleasing, economically viable, and effective for reducing runoff and peak flow.

Land ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1055
Author(s):  
Heenyun Kim ◽  
Gunwoo Kim

Low-Impact Development (LID) is alleviating the water cycle problems that arise from an increasing impervious surface area caused by urbanization. However, there is insufficient research on the application and analyses of LID techniques that are used for studying the management goals for water cycle restoration. The present study applied various LID techniques, utilizing the stormwater management model (SWMM) in the Naju-Noan Waterfront Zone Construction Project and studying its effects, aiming to restore the runoff that had increased due to urbanization to its pre-development state. The five LID techniques used in the analysis were permeable pavements, bioswales, rainwater gardens, green roofs, and planter boxes, which took up 36.2% of the total area. Our analysis showed that development increased the runoff rate from 39.4% to 62.4%, and LID reduced it to 34.7%. Furthermore, development increased the peak flow from 0.77 m³/s to 1.08 m³/s, and the application of LID reduced it to 0.78 m³/s. An effective reduction in the runoff and peak flow was shown in every recurrence period that was tested, and the bioretention cell type of LID showed the best effectiveness per unit area compared with permeable pavements and green roofs.


2021 ◽  
Author(s):  
Xinxin Sui ◽  
Frans van de Ven

Abstract. Low impact development (LID) was promoted as an alternative to conventional urban drainage methods. The effects of LID at site or urban scales have been widely evaluated. This project aims to investigate the impact of LID implementation on basin runoff at regional scale in a half urbanized catchment; especially the overlap of urban and rural sub-flows at peak times is concerned. A SUPERFLEX conceptual model framework was adapted as a semi-distributed model to simulate the rainfall-runoff relationship in the catchment for San Antonio, Texas as a case study. Scenario analyses of both urban development and LID implementation were conducted. Results show that (1) the infill urban development strategy benefits more from runoff control than the sprawl urban development strategy; (2) in non-flood season permeable pavements, bioretention cells, and vegetated swales decrease peak runoff forcefully and permeable pavements, bioretention cells, and green roofs are good at runoff volume retention; (3) contrary to the general opinion about the peak reduction effect of LID, for partly urbanized, partly rural basins and extremely wet conditions, the implementation of LID practices delays urban peak runoff and may cause stacking of rural and urban sub-flows, leading to larger basin peaks.


10.29007/4rp8 ◽  
2018 ◽  
Author(s):  
Ingrid Russwurm ◽  
Birgitte Gissvold Johannessen ◽  
Ashenafi Gragne ◽  
Jardar Lohne ◽  
Tone Merete Muthanna

Green roofs (GRs) have become a popular sustainable drainage system (SuDS) technology in urban areas. As many countries and regions experience political encouragement and substitution schemes in implementing GRs, there is a need for reliant models that can support designing purposes. The stormwater management model’s (SWMM) Low Impact Development Green Roof (LID-GR) control is used to simulate the hydrological detention performance of two GRs, GR1 and GR2, with different drainage properties located in Oslo, Norway. This study uses event-based data to replicate GR runoff. Accordingly, four event-models were calibrated using the Shuffled Complex Evolution algorithm with the Nash-Sutcliffe criteria (NSE) as the objective function. Eight events were used for model validation. Simulation results revealed that SWMM’s LID module can capture response of the GRs even though the adequacy varies among events. During calibration two GR1 (0.55 and 0.72) and three GR2 (0.73, 0.88 and 0.51) event-models yielded NSE>0.5. However, only parameter sets of two GR2 event-models yielded NSE>0.5 when applied to the validation events. Parameter sensitivity analysis exhibited significant correlation between conductivity slope and maximum precipitation intensity. The study shows potential of SWMM as a design tool if supplemented with a calibration algorithm and some adjustments to the LID module.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 795 ◽  
Author(s):  
Pu Zhang ◽  
Lei Chen ◽  
Xiaoshu Hou ◽  
Guoyuan Wei ◽  
Xiaoyue Zhang ◽  
...  

Low impact development (LID) has been widely applied to mitigate urban rainwater problems since the 1990s. However, the effect of LID practices has seldom been evaluated in detail. In this study, the effect of individual and combined LID practices on the reduction of roof runoff are specifically quantified considering the hydrological relationship between LID at the building scale and the campus scale at Beijing Normal University (BNU). The results show that individual and combined LID practices effectively reduce roof runoff for all types of rainfall and for rainfall with return periods from 0.5 to 50 years at the building scale. Combination scenarios maintain good performance with fewer areas of composed LID. Most values for the effect of combination scenarios are between the effects of composed LID. To achieve the highest cost efficiency, low elevation greenbelts should be the first choice, and green roofs should only be selected when low elevation greenbelts and rain barrels cannot be implemented. At the campus scale, individual and combined LID practices effectively reduce the outflow from and the overflow in the campus and combination scenarios have the best reduction performance. This study provides an important reference for urban water management and LID related decision making.


Eng ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 96-111
Author(s):  
Claudinei Rodrigues de Aguiar ◽  
Jéssica Klemm Nuernberg ◽  
Thays Cristiane Leonardi

Geographic information systems (GIS) and multicriteria decision methods are robust techniques for supporting the urban planning process, including urban drainage. New low-impact management approaches (LID) for rainwater have been investigated and have become increasingly used. Considering the central region of Pato Branco city, which suffers recurrent problems related to flooding, this work presents a method to identify potential areas for the application of LIDs, such as rainwater collection tanks, permeable pavements, green roofs, and rain gardens. The identification of these areas is based on the analysis in a GIS environment considering criteria related to both the land slope, the characteristics of land use and technical parameters. Thus, we observe that rainwater collection tanks are indicated for all habitations, permeable pavements are recommended for 6.30% of the study area, while green roofs can be implemented in 3.97% of the area. Finally, 3.03% can receive rain gardens. In total, 13.30% of the central region of Pato Branco can receive LIDs. The results obtained reveal that the use of the GIS tool associated with multicriteria analysis is efficient in choosing locations for the implementation of LIDs as alternatives for the management of urban drainage.


2018 ◽  
Vol 45 ◽  
pp. 00008 ◽  
Author(s):  
Joanna Bąk

The progressing process of urbanization causes areas that were once previously green to turn into areas with a high rate of runoff. For this reason, all activities aimed at the alternative management of rainwater in the city are extremely important. The aim of the work is to compare the share of rainwater management in urban catchments to various alternative forms of management of these waters (including rain gardens and green roofs). The paper compares the outflows from the sample catchment with different runoff coefficients and after the implementation of various Low Impact Development (LID) practices to the catchment. The calculations were carried out using the Storm Water Management Model (SWMM) program version 5.1.012 with LID controls developed by the United States Environmental Protection Agency (US EPA). The rainfall data used to carry out the simulation was derived over the last three years from the meteorological station in Krakow.


2007 ◽  
Vol 2 (2) ◽  
Author(s):  
William C. Lucas

Retaining rainfall where it lands is a fundamental benefit of Low Impact Development (LID). The Delaware Urban Runoff Management Model (DURMM) was developed to address the benefits of LID design. DURMM explicitly addresses the benefits of impervious area disconnection as well as swale flow routing that responds to flow retardance changes. Biofiltration swales are an effective LID BMP for treating urban runoff. By adding check dams, the detention storage provided can also reduce peak rates. This presentation explores how the DURMM runoff reduction approach can be integrated with detention routing procedures to project runoff volume and peak flow reductions provided by BMP facilities. This approach has been applied to a 1,200 unit project on 360 hectares located in Delaware, USA. Over 5 km of biofiltration swales have been designed, many of which have stone check dams placed every 30 to 35 meters to provide detention storage. The engineering involved in the design of such facilities uses hydrologic modeling based upon TR-20 routines, as adapted by the DURMM model. The hydraulic approach includes routing of flows through the check dams. This presentation summarizes the hydrological network, presents the hydrologic responses, along with selected hydrographs to demonstrate the potential of design approach.


2019 ◽  
Vol 20 (2) ◽  
pp. 383-394 ◽  
Author(s):  
Jing Peng ◽  
Jiayi Ouyang ◽  
Lei Yu ◽  
Xinchen Wu

Abstract Recently urban waterlogging problems have become more and more serious, and the construction of an airport runway makes the impervious area of the airport high, which leads to the deterioration of the water environment and frequent waterlogging disasters. It is of great significance to design and construct the sponge airport with low impact development (LID) facilities. In this paper, we take catchment N1 of Beijing Daxing International Airport as a case study. The LID facilities are designed and the runoff process of a heavy rainfall in catchment N1 is simulated before and after the implementation of LID facilities. The results show that the total amount of surface runoff, the number of overflow junctions and full-flow conduits of the rainwater drainage system in catchment N1 of Beijing Daxing International Airport are significantly reduced after the implementation of the LID facilities. Therefore, the application of LID facilities has greatly improved the ability of the airport to remove rainwater and effectively alleviated the risk of waterlogging in the airport flight area. This study provides theoretical support for airport designers and managers to solve flood control and rainwater drainage problems and has vital practical significance.


2017 ◽  
Vol 47 (1) ◽  
pp. 32-65 ◽  
Author(s):  
Dong Won Shin ◽  
Laura McCann

This study explores factors affecting adoption of two stormwater management practices, rain gardens and rain barrels. Mail survey data from Columbia, Missouri indicate adoption rates of 3.12 percent (rain gardens) and 7.47 percent (rain barrels). This unique dataset enables us to distinguish among nonadopters using knowledge levels, and to investigate the effect of practice-specific barriers. Clustered multinomial logistic regressions reveal serious gardeners are more likely to adopt both practices. Specific barriers differ by practice and type of nonadopter. Adding practice-specific barriers increased pseudo R2 values from 0.12 to 0.22 for rain gardens and from 0.13 to 0.26 for rain barrels.


2013 ◽  
Vol 69 (4) ◽  
pp. 727-738 ◽  
Author(s):  
Yanling Li ◽  
Roger W. Babcock

Green roofs reduce runoff from impervious surfaces in urban development. This paper reviews the technical literature on green roof hydrology. Laboratory experiments and field measurements have shown that green roofs can reduce stormwater runoff volume by 30 to 86%, reduce peak flow rate by 22 to 93% and delay the peak flow by 0 to 30 min and thereby decrease pollution, flooding and erosion during precipitation events. However, the effectiveness can vary substantially due to design characteristics making performance predictions difficult. Evaluation of the most recently published study findings indicates that the major factors affecting green roof hydrology are precipitation volume, precipitation dynamics, antecedent conditions, growth medium, plant species, and roof slope. This paper also evaluates the computer models commonly used to simulate hydrologic processes for green roofs, including stormwater management model, soil water atmosphere and plant, SWMS-2D, HYDRUS, and other models that are shown to be effective for predicting precipitation response and economic benefits. The review findings indicate that green roofs are effective for reduction of runoff volume and peak flow, and delay of peak flow, however, no tool or model is available to predict expected performance for any given anticipated system based on design parameters that directly affect green roof hydrology.


Sign in / Sign up

Export Citation Format

Share Document