Aquatic Environmental Aspects of Non-Pesticidal Organotin Compounds

1991 ◽  
Vol 26 (3) ◽  
pp. 243-360 ◽  
Author(s):  
R. James Maguire

Abstract Non-pesticidal organotin compounds in Canadian commerce are those of monomethyltin, dimethyltin, monobutyltin, dibutyltin, monooctyltin and dioctyltin. A review is presented of the uses, methods of analysis, environmental occurrence and aquatic toxicity of these compounds, which are scheduled for assessment under the Canadian Environmental Protection Act. It is likely that the most important non-pesticidal route of entry of these compounds to the environment will be through leaching of organotin-stabilized poly(vinyl chloride) by water. Monomethyltin and dimethyltin are widespread in the global environment. Monobutyltin and dibutyltin have been found frequently in harbours, marinas and shipping channels in Canada and elsewhere, arising largely as degradation products from the use of the antifouling agent tributyltin which is now regulated in Canada. There are few reports in the literature on the occurrence of butyltin species as a result of non-pesticidal uses or uses of tributyltin other than as an antifouling agent. Monooctyltin and dioctyltin have not been found to date in Canada or elsewhere in environmental samples. Judging from concentrations which have been reported to date, it appears that the mono- and di-methyltin, butyltin and octyltin species pose no threat to aquatic organisms in Canada vis-à-vis acute toxicity. Data on the persistence of these species in aquatic environments are in some cases fragmentary or non-existent, but in general it appears that these species would not be persistent in aquatic environments, with half-lives estimated to be less than a few months at 20°C.

Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2147
Author(s):  
Anjali Krishnan ◽  
Xiaozhen Mou

Harmful cyanobacterial blooms pose an environmental health hazard due to the release of water-soluble cyanotoxins. One of the most prevalent cyanotoxins in nature is microcystins (MCs), a class of cyclic heptapeptide hepatotoxins, and they are produced by several common cyanobacteria in aquatic environments. Once released from cyanobacterial cells, MCs are subjected to physical chemical and biological transformations in natural environments. MCs can also be taken up and accumulated in aquatic organisms and their grazers/predators and induce toxic effects in several organisms, including humans. This brief review aimed to summarize our current understanding on the chemical structure, exposure pathway, cytotoxicity, biosynthesis, and environmental transformation of microcystins.


Chemosphere ◽  
2009 ◽  
Vol 74 (9) ◽  
pp. 1275-1278 ◽  
Author(s):  
H. Okamura ◽  
S. Kitano ◽  
S. Toyota ◽  
H. Harino ◽  
K.V. Thomas

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Eun Kyung Sohn ◽  
Seyed Ali Johari ◽  
Tae Gyu Kim ◽  
Jin Kwon Kim ◽  
Ellen Kim ◽  
...  

To better understand the potential ecotoxicological impact of silver nanoparticles (AgNPs) and silver nanowires (AgNWs) released into freshwater environments, the toxicities of these nanomaterials were assessed and compared using Organization for Economic Cooperation and Development (OECD) test guidelines, including a “Daphniasp., acute immobilization test,” “Fish, acute toxicity test,” and “freshwater alga and cyanobacteria, growth inhibition test.” Based on the estimated median lethal/effective concentrations of AgNPs and AgNWs, the susceptibility to the nanomaterials was different among test organisms (daphnia > algae > fish), suggesting that the AgNPs are classified as “category acute 1” forDaphnia magna, “category acute 2” forOryzias latipes, and “category acute 1” forRaphidocelis subcapitata, while the AgNWs are classified as “category acute 1” forDaphnia magna, “category acute 2” forOryzias latipes, and “category acute 2” forRaphidocelis subcapitata, according to the GHS (Globally Harmonized System of Classification and Labelling of Chemicals). In conclusion, the present results suggest that more attention should be paid to prevent the accidental or intentional release of silver nanomaterials into freshwater aquatic environments.


2021 ◽  
Vol 8 ◽  
Author(s):  
Elio de Almeida Borghezan ◽  
Tiago Henrique da Silva Pires ◽  
Takehide Ikeda ◽  
Jansen Zuanon ◽  
Shiro Kohshima

The Amazon has the highest richness of freshwater organisms in the world, which has led to a multitude of hypotheses on the mechanisms that generated this biodiversity. However, most of these hypotheses focus on the spatial distance of populations, a framework that fails to provide an explicit mechanism of speciation. Ecological conditions in Amazon freshwaters can be strikingly distinct, as it has been recognized since Alfred Russel Wallace’s categorization into black, white, and blue (= clear) waters. Water types reflect differences in turbidity, dissolved organic matter, electrical conductivity, pH, amount of nutrients and lighting environment, characteristics that directly affect the sensory abilities of aquatic organisms. Since natural selection drives evolution of sensory systems to function optimally according to environmental conditions, the sensory systems of Amazon freshwater organisms are expected to vary according to their environment. When differences in sensory systems affect chances of interbreeding between populations, local adaptations may result in speciation. Here, we briefly present the limnologic characteristics of Amazonian water types and how they are expected to influence photo-, chemical-, mechano-, and electro-reception of aquatic organisms, focusing on fish. We put forward that the effect of different water types on the adaptation of sensory systems is an important mechanism that contributed to the evolution of fish diversity. We point toward underexplored research perspectives on how divergent selection may act on sensory systems and thus contribute to the origin and maintenance of the biodiversity of Amazon aquatic environments.


2021 ◽  
Author(s):  
Florentina Laura Chiriac ◽  
Catalina Stoica ◽  
Iuiana Paun ◽  
Florinela Pirvu ◽  
Toma Galaon ◽  
...  

Abstract Organic UV-filters, including 4-hydroxybenzophenone (4-HBP) and 2,4-dihydroxybenzophenone (BP-1), are persistent emerging contaminants whose presence in the environment poses a threat to aquatic organisms due to their endocrine disruptor’s properties. For this reason, finding suitable technological processes for their safety and efficient removal from the environment represent a priority for the scientific community. To the author’s knowledge, until now, there are no studies reporting the biodegradation of 4-HBP and BP-1 by a single bacteria strain. In this paper, there were tested the 4-HBP and BP-1 biodegradation potential of two Gram-positive (Staphylococcus aureus and Enterococcus faecalis) and two Gram-negative (Salmonella typhimurium and Serratia rubidae). The 4-HPB biodegradation process was observed only in the presence of Gram-negative bacterial strains. Thus, the biodegradation rates of 4-HBP reached up to 12.7% after 24h of incubation in presence of Salmonella thyphimurium and up to 24.0% after 24h of incubation with Serratia rubidae. Staphylococcus aureus was able to biodegrade 26.7% of BP-1, while Salmonella thiphymurium was able to biodegrade 14.7% of BP-1 after 24h of incubation. Their biodegradation products generated during the 4-HBP biodegradation process by Serratia rubidae were analyzed through LC-MS/MS analysis. The (bio)degradation products were benzophenone and a multi-hydroxylated derivative of 4-HBP and the degradation pathways were proposed. The data obtained in this study gave important information regarding the 4-HBP and BP-1 potential biodegradation by single bacterial strains.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Mukosha Lloyd ◽  
Onyango S. Maurice ◽  
Ochieng Aoyi ◽  
Taile Y. Leswifi

The environmental discharge of inefficiently treated waste solutions of the strong biocide glutaraldehyde (GA) from hospitals has potential toxic impact on aquatic organisms. The adsorption characteristics of mixed polarized monomeric and polymeric molecules of GA from water on mesoporous acid-amine modified low-cost activated carbon (AC) were investigated. It was found that the adsorption strongly depended on pH and surface chemistry. In acidic pH, the adsorption mechanism was elaborated to involve chemical sorption of mainly hydroxyl GA monomeric molecules on acidic surface groups, while in alkaline pH, the adsorption was elaborated to involve both chemical and physical sorption of GA polymeric forms having mixed functional groups (aldehyde, carboxyl, and hydroxyl) on acidic and amine surface groups. The optimum pH of adsorption was about 12 with significant contribution by cooperative adsorption, elucidated in terms of hydrogen bonding and aldol condensation. Freundlich and Dubinin-Radushkevich models were fitted to isotherm data. The adsorption kinetics was dependent on initial concentration and temperature and described by the Elovich model. The adsorption was endothermic, while the intraparticle diffusion model suggested significant contribution by film diffusion. The developed low-cost AC could be used to supplement the GA alkaline deactivation process for efficient removal of residual GA aquatic toxicity.


Author(s):  
César A Barbero ◽  
Edith Inés Yslas

The increasing production and use of engineered nanomaterials raise concerns about inadvertent exposure and the potential for adverse effects on the aquatic environment. The aim of this chapter is focused on studies of nanotoxicity in different models of aquatic organisms and their impact. Moreover, the chapter provides an overview of nanoparticles, their applications, and the potential nanoparticle-induced toxicity in aquatic organisms. The topics discussed in this chapter are the physicochemical characteristic of nanomaterials (size, aggregation, morphology, surface charge, reactivity, dissolution, etc.) and their influence on toxicity. Further, the text discusses the direct effect of nanomaterials on development stage (embryonic and adult) in aquatic organisms, the mechanism of action as well as the toxicity data of nanomaterials in different species.f action as well as the toxicity data of nanomaterials in different species.


2016 ◽  
Vol 13 (4) ◽  
pp. 732 ◽  
Author(s):  
M.-A. Galeron ◽  
F. Vaultier ◽  
J.-F. Rontani

Environmental contextHow can we know what happens to organic matter in aquatic environments? Although several compounds exist that can be used to trace the origin and state of organic matter, not many are sufficiently stable and specific to trace degradation processes, but α- and β-amyrins can fulfil that role. Such knowledge will help us better understand and better quantify carbon fluxes in riverine and marine environments. AbstractIn order to fulfil the current need for stable and specific tracers to monitor vascular-plant organic matter degradation in aquatic environments, α-amyrin (urs-12-en-3β-ol) and β-amyrin (olean-12-en-3β-ol) were oxidised in vitro and their abiotic degradation products quantified in environmental samples from the Rhône River in France. Although they appear inert to photooxidation, they are clearly affected by autoxidation and the tracer potential of the resulting products was confirmed. Autoxidation of α- and β-amyrins produces urs or olean-12-en-3-one, 3β-hydroxy-urs or olean-12-en-11-one, urs or olean-12-en-3β,11α-diol and urs or olean-12-en-3,11-dione. 3β-Hydroxy-urs-12-en-11-one and 3β-hydroxy-olean-12-en-11-one, the main oxidation products detected, were selected as autoxidation tracers. These compounds, specific to autoxidation, were detected in dry leaves of Smilax aspera and in suspended particulate matter samples collected in the Rhône River and evidenced the importance of autoxidation in the degradation of organic matter of terrestrial origin.


2018 ◽  
Vol 5 (5) ◽  
pp. 171792 ◽  
Author(s):  
Jesse P. Harrison ◽  
Carl Boardman ◽  
Kenneth O'Callaghan ◽  
Anne-Marie Delort ◽  
Jim Song

Plastic litter is encountered in aquatic ecosystems across the globe, including polar environments and the deep sea. To mitigate the adverse societal and ecological impacts of this waste, there has been debate on whether ‘biodegradable' materials should be granted exemptions from plastic bag bans and levies. However, great care must be exercised when attempting to define this term, due to the broad and complex range of physical and chemical conditions encountered within natural ecosystems. Here, we review existing international industry standards and regional test methods for evaluating the biodegradability of plastics within aquatic environments (wastewater, unmanaged freshwater and marine habitats). We argue that current standards and test methods are insufficient in their ability to realistically predict the biodegradability of carrier bags in these environments, due to several shortcomings in experimental procedures and a paucity of information in the scientific literature. Moreover, existing biodegradability standards and test methods for aquatic environments do not involve toxicity testing or account for the potentially adverse ecological impacts of carrier bags, plastic additives, polymer degradation products or small (microscopic) plastic particles that can arise via fragmentation. Successfully addressing these knowledge gaps is a key requirement for developing new biodegradability standard(s) for lightweight carrier bags.


Sign in / Sign up

Export Citation Format

Share Document