scholarly journals Copper removal from semiconductor CMP wastewater in the presence of nano-SiO2 through biosorption

Author(s):  
Xiaoyu Wang ◽  
Gude Buer ◽  
Wei Fan ◽  
Lei Gao ◽  
Mingxin Huo

Abstract Copper-bearing wastewater from chemical mechanical planarization (CMP) is a typical semiconductor development byproduct. How to effectively treat Cu2+ in the CMP wastewater is a great concern in the microchip manufacturing industry. In this study, we investigated the potential for the microbial removal of Cu2+ by a multiple heavy metal-resistant bacterium Cupriavidus gilardii CR3. The environmental factors, including pH, nano-SiO2, ionic strengths, and initial concentrations of Cu2+, and adsorption times on the bioremoval of Cu2+ in CMP wastewater were optimized. Under optimal condition, the maximum biosorption capacity for Cu2+ was 18.25 mg g−1 and the bioremoval rate was 95.2%. The Freundlich model is described well for the biosorption of Cu2+ in CMP wastewater in the presence of nano-SiO2 (R2 = 0.99). The biosorption process obeyed the pseudo-second-order kinetic equation (R2 > 0.99). In the column experiment, the advection–dispersion–retention model fitted the breakthrough curve of all experiments well (R2 > 0.95). The attachment coefficient in the sand matrix coated by CR3 biofilm was 2.24–2.80 times as that in clean sand. Overall, C. gilardii CR3 is a promising candidate to remove Cu2+ from CMP wastewater. Nano-SiO2 in CMP wastewater did not inhibit the bioremoval of Cu2+ but showed a slight promotion effect instead.

Author(s):  
Ülküye Dudu Gül ◽  
Zeynep Mine Şenol ◽  
Burcu Ertit Taştan

Abstract The biosorption properties of a newly isolated and identified cyanobacterium called Desertifilum tharense were investigated in the current study. Following morphological and molecular identification (16S rRNA sequencing analysis), the food colorant removal potential of this new isolate was determined. Moreover, the isotherm, kinetic, and thermodynamic studies were performed, and also the biosorbent characterization was studied after and before colorant biosorption with FTIR and SEM analysis. Additionally, the changes in chlorophyll content of the biosorbent were examined after and before colorant treatment. The newly isolated cyanobacterial biosorbent removed 97% of Allura red food colorant/dye at 1,500 mg L−1 initial dye concentration successfully at optimal conditions. Langmuir isotherm and pseudo-second-order kinetic models were fitted with the biosorption of the dye. The D-R model showed that the biosorption process physically occurred. The chlorophyll-a content of the biosorbent was negatively affected by the biosorption. The newly isolated and identified cyanobacterium seems to be a successful candidate for the use to treat highly dye concentrated wastewaters.


2011 ◽  
Vol 76 (3) ◽  
pp. 363-373 ◽  
Author(s):  
Szende Tonk ◽  
Andrada Măicăneanu ◽  
Cerasella Indolean ◽  
Silvia Burca ◽  
Cornelia Majdik

In this investigation, the removal of Cd2+ ions by a brewery waste biomass in immobilized (Ca-alginate beads) form was studied. The removal process was conducted at room temperature under batch conditions (magnetic stirring) using different initial cadmium concentrations. The equilibrium of biosorption was reached in 150 minutes for all employed initial concentrations. The maximum biosorption capacity was calculated to be 5.96 mg Cd2+ g-1 yeast for an initial Cd2+ concentration of 169 mg L-1. Langmuir and Freundlich adsorption isotherms were used to correlate the equilibrium adsorption data. Based on the correlation coefficients, it was concluded that the Langmuir isotherm is more suitable for describing the equilibrium data of cadmium biosorption. In addition, first and pseudo-second order kinetic models were applied to describe the biosorption process. The kinetic parameters for the pseudo-second order kinetics were determined.


2014 ◽  
Vol 945-949 ◽  
pp. 3483-3488
Author(s):  
Bai Ren Yang ◽  
Dong Xue Liu ◽  
Xian Niu ◽  
Cheng Ding

In order to investigate the biosorption of Cu2+ by anaerobic granular sludge, the effect of equilibrium time, pH, sludge dosage, biosorption kinetics, biosorption thermodynamics and biosorption isotherms had been studied. Results showed that pseudo second-order kinetic model was useful to describe the biosorption process of Cu2+. Both Langmuir and Freundlich isotherm equations could well describe the desorption process at 15-55 °C. Thermodynamic studies showed that the biosorption process was spontaneous and endothermic in nature. When the solution temperature maintained at 35 °C, pH of 6~7, a good biosorption process could be obtained.


2014 ◽  
Vol 12 (1) ◽  
pp. 477-486 ◽  
Author(s):  
Abbas H. Sulaymon ◽  
Ahmed A. Mohammed ◽  
Tariq J. Al-Musawi

Abstract This study aims to evaluate the ability of abundant low-cost garden grass to remove cadmium and chromium ions from aqueous solutions. Batch biosorption studies were carried out to examine the biosorption capacity, pH value, temperature, agitation speed, and metal ions concentration. The biosorption process revealed that the garden grass was an effective biosorbent of cadmium and chromium. The maximum chromium and cadmium removal rate was 90 and 80% at pH 4, respectively. FTIR spectroscopy analysis showed that the hydroxyl, amine, and carboxyl groups were the major groups responsible for the biosorption process. The maximum biosorption capacity was 18.19 and 19.4 mg/g for cadmium and chromium, respectively. The biosorption isotherm data fitted well the Langmuir model. Kinetic data were adequately fitted by the pseudo-second-order kinetic model.


2011 ◽  
Vol 236-238 ◽  
pp. 155-158
Author(s):  
Li Fang Zhang ◽  
Shu Juan Dai ◽  
Ying Ying Chen

In this study, Biosorption of hexavalent chromium ions from aqueous solution by using biomass ofAspergillus nigerwas investigated. Different parameters such as initial pH, biosorbent amount, contact time and temperature were explored. The biosorption of Cr (VI) ions was highly pH dependent and the optimum pH for biosorption of Cr (VI) ions was found to be 2.0. Biosorption capacity of Cr (VI) ions decreased with increased biosorbent dosage. The biosorption equilibrium was established in about 120min of contact time. Equilibrium uptake of Cr (VI) ions onto biomass increased from 12.57 mg/g at 20°C to 19.48 mg/g at 40 °C for 20mg/L Cr (VI) ions concentration. The biosorption process followed the pseudo-second order kinetic model and the correlation coefficients from the pseudo-second order model were all higher than 0.997 in all studied temperatures. These results suggest that the biomass ofAspergillus nigeris a promising biosorbent for removal of chromium (VI) ions from the wastewater.


Author(s):  
Paul Fabrice Nguema ◽  
Zejiao Luo ◽  
Zachari Mohamadou Mounir ◽  
Lian Jing Jing

Many studies were undertaken on the biosorption potential of different kinds of biomaterials. However, there is a paucity of data regarding the biosorption mechanism of Cr (VI) using dried cells. In our study, the removal of Cr (VI) from aqueous solution was investigated in a batch system by the dried biomass of a chromium-resistant bacterium isolated from activated sludge samples. Equilibrium and kinetic experiments were undertaken at various initial metal concentration, pH, and biosorbent dosage. Bacillus cereus biomass was characterized using Energy-Dispersive X-ray (EDX), Scanning Electron Microscope (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). Biosorption process was found to be pH dependent. The optimum pH was found to be 2.0. The Langmuir and Freundlich were considered to identify the isotherm that could better describe the equilibrium adsorption of Cr (VI) onto the biomass. Langmuir and Freundlich models fitted our experimental data. The suitability of the pseudo-first order and pseudo-second order kinetic models for the biosorption of Cr (VI) onto Bacillus cereus was also performed. The mechanism for the adsorption was studied by fitting the kinetic data with the Boyd plot and intra-particle diffusion model. External mass transfer was found to be the rate-determining step. Based on the ionic nature of the metal, the intra-particle diffusion and extent of film diffusion varied. 


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1444
Author(s):  
Iulia Nica ◽  
Carmen Zaharia ◽  
Daniela Suteu

A biomaterial based on poly(vinyl alcohol) reticulated with tricarboxi-cellulose obtained by TEMPO oxidation (OxC25) was used as a new biosorbent for Co(II) ions retention from aqueous solutions. The biosorption process of Co(II) ions was studied while mainly considering the operational factors that can influence it (i.e., biosorbent concentration, pH of the aqueous media, temperature and contact time of the phases). The maximum adsorption capacity was 181.82 mg/g, with the biosorption well fitted by the Langmuir model. The kinetic modeling of the biosorption process was based on certain models: Lagergreen (pseudo first order model), Ho (pseudo second order model), Elovich (heterogeneous biosorbent model), Webber–Morris (intraparticle diffusion model) and McKay (film diffusion model). The corresponding kinetic model suggests that this biosorption process followed a pseudo-second order kinetic model and was developed in two controlled steps beginning with film diffusion and followed by intraparticles diffusion.


2019 ◽  

<p>In this study, the potential textile dye biosorption capacity of a low-cost biosorbent (P. animale) was tested as functions of pH, biosorbent type, initial dye concentration, temperature, contact time and biosorbent dosage at batch scale level. The optimal conditions are 2, dried biosorbent, 93.16 mg/L, 45 ◦C, 1440 minutes and 4 g/L for pH, biosorbent type, initial dye concentration, temperature, contact time and adsorbent dosage, respectively. Dried P. animale removed 99.66 % of Remazol Black B (RBB). The isotherm and kinetic models were analyzed for biosorption mechanism and characteristic. According to the results, Langmuir isotherm and pseudo second order kinetic models were compatible with the experimental data obtained for RBB biosorption on algal biosorbent. Also FTIR and elemental analysis were done and resulted that the functional groups on the surface of algae had significant role in biosorption process. The results of this study supported that P. animale is an effective, inexpensive and eco-friendly biosorbent for treatment of textile dye wastewater.</p>


2013 ◽  
Vol 11 (12) ◽  
pp. 2048-2057 ◽  
Author(s):  
Daniela Suteu ◽  
Alexandra Blaga ◽  
Mariana Diaconu ◽  
Teodor Malutan

AbstractThe biosorption Brilliant Red HE-3B reactive dye by nonliving biomass, Saccharomyces cerevisiae, in batch procedure was investigated. Equilibrium experimental data were analyzed using Freundlich, Langmuir and Dubinin — Radushkevich isotherm models and obtained capacity about 104.167 mg g−1 at 20°C. The batch biosorption process followed the pseudo-second order kinetic model. The multi-linearity of the Weber-Morris plot suggests the presence of two main steps influencing the biosorption process: the intraparticle diffusion (pore diffusion), and the external mass transfer (film diffusion). The results obtained in batch experiments revealed that the biosorption of reactive dye by biomass is an endothermic physical-chemical process occurring mainly by electrostatic interaction between the positive charged surface of the biomass and the anionic dye molecules. The biosorption mechanism was confirmed by FT-IR spectroscopy and microscopy analysis


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
José A. Fernández-López ◽  
José M. Angosto ◽  
María D. Avilés

The biosorption of hexavalent chromium from aqueous solutions byOpuntiacladodes and ectodermis from cactus fruits was investigated. Both types of biomass are considered low-cost, natural, and ecofriendly biosorbents. Batch experiments were carried out to determine Cr(VI) biosorption capacity and the efficiency of the biosorption process under different pH, initial Cr(VI) concentration, and sorbent dosage. The biosorption of Cr(VI) byOpuntiabiomass was highly pH dependent, favoring higher metal uptake at low pH. The higher biosorption capacity was exhibited at pH 2. The optimal conditions were obtained at a sorbent dosage of 1 g L−1and initial metal concentration of 10 mg L−1. Biosorption kinetic data were properly fitted with the pseudo-second-order kinetic model. The rate constant, the initial biosorption rate, and the equilibrium biosorption capacity were determined. The experimental equilibrium data obtained were analyzed using two-parameter isotherm models (Langmuir, Freundlich, and Temkin). The Langmuir maximum monolayer biosorption capacity (qmax) was 18.5 mg g−1for cladodes and 16.4 mg g−1for ectodermis. The results suggest thatOpuntiabiomass could be considered a promising low-cost biosorbent for the ecofriendly removal of Cr(VI) from aqueous systems.


Sign in / Sign up

Export Citation Format

Share Document