Removal of color and estrogenic substances by fungal reactor equipped with ultrafiltration unit

2002 ◽  
Vol 2 (5-6) ◽  
pp. 353-358 ◽  
Author(s):  
M. Fujita ◽  
M. Ike ◽  
K. Kusunoki ◽  
T. Ueno ◽  
K. Serizawa ◽  
...  

Removal/degradation of color components and endocrine disruptors (EDs) by a bioreactor employing a white rot fungus Trametes hirsuta IFO4917 equipped with ultramembrane filtration (UF) unit was proposed and experimentally investigated. Among 20 white-rot fungal strains, T. hirsuta IFO4917 was screened as a most effective white-rot fungus for removal/degradation of color and EDs. This strain could effectively decolorize humic acid and degrade a wide range of Eds: bisphenol A (BPA), nonylphenol (NP), 17 beta-estradiol, estrone and estriol, although di-(2-ethylhexyl) phthalate (DEHP) could not be degraded. A bench scale (10 L), sequencing batch reactor using this fungus was developed and applied to decolorization of a melanoidin containing synthetic wastewater (4,200 color unit). The fungus was immobilized onto polyurethane foam cubes to stably maintain the biomass, and UF was applied to achieve a complete solid/liquid separation. The wastewater was decolorized in a main bioreactor and the resultant biologically treated wastewater was subjected to UF to obtain permeate as the effluent. The concentrate containing the remaining colored components with higher molecular weights was returned to the fungal bioreactor for further decolorization. In this fungal/UF system, 70% of the decolorization was constantly achieved at HRT of 2 days. The fungal/UF system was scaled up to a pilot-scale plant (200 L), and applied to the treatment of the secondary effluent from a night soil treatment process containing color components (1,000 color unit) and some EDs, NP, 4-t-octylphenol (OP), DEHP and benzophenone. 65-70% of decolorization efficiency was achieved at a 1.5 day cycle sequencing batch operation. NP, OP and benzophenone were removed efficiently with removal of 94%, 89% and 81%, respectively. However, the removal of DEHP was not so effective (45%).

2008 ◽  
Vol 58 (2) ◽  
pp. 435-438 ◽  
Author(s):  
M. Kornaros ◽  
C. Marazioti ◽  
G. Lyberatos

SBRs are usually preferred as small and decentralized wastewater treatment systems. We have demonstrated previously that using a frequent enough switching between aerobic and anoxic conditions and a specific to the treated wastewater aerobic to anoxic phase ratio, it is possible to by-pass the second step of nitrification (i.e. conversion of nitrite to nitrate nitrogen). This innovative process for nitrate by-pass has been branded as UP-PND (University of Patras-Partial Nitrification Denitrification) (WO 2006/129132). The proved methodology was successfully transferred from a lab-scale SBR reactor treating synthetic wastewater to a pilot-scale SBR system treating real wastewater. In this work we present the results from the operation of this pilot-scale SBR, constructed in the Wastewater Treatment Plant of Patras (Greece), using 6-hour, 8-hour and 12-hour cycles. It is demonstrated that three pairs of aerobic/anoxic phases with a relative duration of 1:2 (8-hour cycle) and 2:3 (12-hour cycle) secures the desired by-pass of nitrate production.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tianjie Yuan ◽  
Shuyi Zhang ◽  
Yifei Chen ◽  
Ran Zhang ◽  
Letian Chen ◽  
...  

In this study, a white rot fungus Antrodia was newly isolated and named P5. Then its dye biodegradation ability was investigated. Our results showed that P5 could effectively degrade 1,000 mg/L Reactive Blue 4 (RB4) in 24 h with 95% decolorization under shaking conditions. It could tolerate a high dye concentration of 2,500 mg/L as well as 10% salt concentration and a wide range of pH values (4–9). Herbal extraction residues (HER) were screened as additional medium elements for P5 biodegradation. Following the addition of Fructus Gardeniae (FG) extraction residue, the biodegradation performance of P5 was significantly enhanced, achieving 92% decolorization in 12 h. Transcriptome analysis showed that the expression of multiple peroxidase genes was simultaneously increased: Lignin Peroxidase, Manganese Peroxidase, Laccase, and Dye Decolorization Peroxidase. The maximum increase in Lignin Peroxidase reached 10.22-fold in the presence of FG. The results of UV scanning and LC-HRMS showed that with the synergistic effect of FG, P5 could remarkably accelerate the biodegradation process of RB4 intermediates. Moreover, the fungal treatment with FG also promoted the abatement of RB4 toxicity. In sum, white rot fungus and herbal extraction residue were combined and used in the treatment of anthraquinone dye. This could be applied in practical contexts to realize an efficient and eco-friendly strategy for industrial dye wastewater treatment.


2021 ◽  
Vol 7 (10) ◽  
pp. 835
Author(s):  
Zichen Zhang ◽  
Aabid Manzoor Shah ◽  
Hassan Mohamed ◽  
Yao Zhang ◽  
Nino Tsiklauri ◽  
...  

Cerrena unicolor is an ecologically and biotechnologically important wood-degrading basidiomycete with high lignocellulose degrading ability. Biological and genetic investigations are limited in the Cerrena genus and, thus, hinder genetic modification and commercial use. The aim of the present study was to provide a global understanding through genomic and experimental research about lignocellulosic biomass utilization by Cerrena unicolor. In this study, we reported the genome sequence of C. unicolor SP02 by using the Illumina and PacBio 20 platforms to obtain trustworthy assembly and annotation. This is the combinational 2nd and 3rd genome sequencing and assembly of C. unicolor species. The generated genome was 42.79 Mb in size with an N50 contig size of 2.48 Mb, a G + C content of 47.43%, and encoding of 12,277 predicted genes. The genes encoding various lignocellulolytic enzymes including laccase, lignin peroxidase, manganese peroxidase, cytochromes P450, cellulase, xylanase, α-amylase, and pectinase involved in the degradation of lignin, cellulose, xylan, starch, pectin, and chitin that showed the C. unicolor SP02 potentially have a wide range of applications in lignocellulosic biomass conversion. Genome-scale metabolic analysis opened up a valuable resource for a better understanding of carbohydrate-active enzymes (CAZymes) and oxidoreductases that provide insights into the genetic basis and molecular mechanisms for lignocellulosic degradation. The C. unicolor SP02 model can be used for the development of efficient microbial cell factories in lignocellulosic industries. The understanding of the genetic material of C. unicolor SP02 coding for the lignocellulolytic enzymes will significantly benefit us in genetic manipulation, site-directed mutagenesis, and industrial biotechnology.


2013 ◽  
Vol 79 (21) ◽  
pp. 6626-6636 ◽  
Author(s):  
Yonathan Arfi ◽  
Anthony Levasseur ◽  
Eric Record

ABSTRACTFungi compete against each other for environmental resources. These interspecific combative interactions encompass a wide range of mechanisms. In this study, we highlight the ability of the white-rot fungusPycnoporus coccineusto quickly overgrow or replace a wide range of competitor fungi, including the gray-mold fungusBotrytis cinereaand the brown-rot fungusConiophora puteana. To gain a better understanding of the mechanisms deployed byP. coccineusto compete against other fungi and to assess whether common pathways are used to interact with different competitors, differential gene expression inP. coccineusduring cocultivation was assessed by transcriptome sequencing and confirmed by quantitative reverse transcription-PCR analysis of a set of 15 representative genes. Compared with the pure culture, 1,343 transcripts were differentially expressed in the interaction withC. puteanaand 4,253 were differentially expressed in the interaction withB. cinerea, but only 197 transcripts were overexpressed in both interactions. Overall, the results suggest that a broad array of functions is necessary forP. coccineusto replace its competitors and that different responses are elicited by the two competitors, although a portion of the mechanism is common to both. However, the functions elicited by the expression of specific transcripts appear to converge toward a limited set of roles, including detoxification of secondary metabolites.


2008 ◽  
Vol 57 (2) ◽  
pp. 225-229 ◽  
Author(s):  
S. K. Gupta ◽  
S. C. Mali

The objective of this research was to study the dechlorination of 1,2-dichloroethane (1,2-DCA) in a synthetic wastewater with lab-scale anaerobic sequencing batch (ASBR) reactors. Anaerobic sludge was used as a biocatalyst. Sodium acetate and dextrose served as the main methanogenic substrate. Experimental studies were conducted at wide-range of volumetric (0.25–1.25 g COD/L.d) and specific (0.0362–0.181 g COD/ g VSS.d) loading rates and influent wastewater CODs (500–2500 mg/L). During 266 days of reactor operation, the mixed culture degraded 1,2 dichloroethane at concentrations of up to 50 mg/L, with an HRT of 48 hrs. No chlorinated intermediates or residues were found. 1,2-DCA degradation resulted in ethene and ethane formation. Acetate was the most effective electron donor for dechlorination, although, dextrose was also effective, but to a lesser extent. The mixed culture degraded 1,2 Dichloroethane in the temperature range of 28±4 °C, with the pH range of 7.25 to 7.95. The 1,2-DCA removal rates achieved, and the safe nature of the end products, signify the anaerobic sequencing batch (ASBR) reactor technology for practical decontamination of waters containing such types of organochlorines. The COD removal efficiencies were in the range of 95 to 98% depending on volumetric and specific loading rates applied.


2012 ◽  
Vol 3 (1) ◽  
pp. 20-21
Author(s):  
A.Sangeetha A.Sangeetha ◽  
◽  
K.Thanigai K.Thanigai ◽  
Narasimhamurthy Narasimhamurthy ◽  
S.K.Nath S.K.Nath

2020 ◽  
Vol 93 (9) ◽  
pp. 289-292
Author(s):  
Yumi SHIMIZU ◽  
Shuma SATHO ◽  
Taro NAKAJIMA ◽  
Hiroaki KOUZAI ◽  
Kiminori SHIMIZU

2018 ◽  
Vol 69 (1) ◽  
pp. 38-44
Author(s):  
Nicoleta Mirela Marin ◽  
Olga Tiron ◽  
Luoana Florentina Pascu ◽  
Mihaela Costache ◽  
Mihai Nita Lazar ◽  
...  

This study investigates the synergistic effects of ion exchange and biodegradation methods to remove the Acid Blue 193 also called Gryfalan Navy Blue RL (GNB) dye from wastewater. Ion exchange studies were performed using a strongly basic anion exchange resin Amberlite IRA 400. The equilibrium was characterized by a kinetic and thermodynamic points of view, establishing that the sorption of the GNB dye was subject to the Freundlich isotherm model with R2 = 0.8710. Experimental results showed that the activated resin can removed up to 93.4% when the concentration of dye solution is 5.62�10-2 mM. The biodegradation of the GNB was induced by laccase, an enzyme isolated from white-rot fungus. It was also analyzed the role of pH and dye concentration on GNB biodegradation, so 5�10-2 mM dye had a maximum discoloration efficiency of 82.9% at pH of 4. The laccase showed a very fast and robust activity reaching in a few minutes a Km value of 2.2�10-1mM. In addition, increasing the GNB concentration up to 8�10-1 mM did not triggered a substrat inhibition effect on the laccase activity. Overall, in this study we proposed a mixt physicochemical and biological approach to enhance the GNB removal and biodegradability from the wastewaters and subsequently the environment.


1991 ◽  
Vol 24 (3-4) ◽  
pp. 189-198 ◽  
Author(s):  
V. P. Lankinen ◽  
M. M. Inkeröinen ◽  
J. Pellinen ◽  
A. I. Hatakka

Decrease of adsorbable organic chlorine (AOX) is becoming the most important criterion for the efficiency of pulp mill effluent treatment in the 1990s. Two methods, designated MYCOR and MYCOPOR which utilize the white-rot fungus Phanerochaete chrysosporium have earlier been developed for the color removal of pulp mill effluents, but the processes have also a capacity to decrease the amount of chlorinated organic compounds. Lignin peroxidases (ligninases) produced by P. chrvsosporium may dechlorinate chlorinated phenols. In this work possibilities to use selected white-rot fungi in the treatment of E1-stage bleach plant effluent were studied. Phlebia radiata. Phanerochaete chrvsosporium and Merulius (Phlebia) tremellosus were compared in shake flasks for their ability to produce laccase, lignin peroxidase(s) and manganese-dependent peroxidase(s) and to remove color from a medium containing effluent. Softwood bleaching effluents were treated by carrier-immobilized P. radiata in 2 1 bioreactors and a 10 1 BiostatR -fermentor. Dechlorination was followed using Cl ion and AOX determinations. All fungi removed the color of the effluent. In P. radiata cultivations AOX decrease was ca. 4 mg l−1 in one day. Apparent lignin peroxidase activities as determined by veratryl alcohol oxidation method were negligible or zero in a medium with AOX content of ca. 60 mg l−1, prepared using about 20 % (v/v) of softwood effluent. However, the purification of extracellular enzymes implied that large amounts of lignin peroxidases were present in the medium and, after the purification, in active form. Enzyme proteins were separated using anion exchange chromatography, and they were further characterized by electrophoresis (SDS-PAGE) to reveal the kind of enzymes that were present during AOX decrease and color removal. The most characteristic lignin peroxidase isoenzymes in effluent media were LiP2 and LiP3.


Sign in / Sign up

Export Citation Format

Share Document