Finite element modeling of underground water flow with Ranney wells

2007 ◽  
Vol 7 (3) ◽  
pp. 41-50 ◽  
Author(s):  
M. Kojić ◽  
N. Filipović ◽  
B. Stojanović ◽  
V. Ranković ◽  
M. Krstić ◽  
...  

The objectives of this study were to define the regional and local groundwater flow, and to give quantitative estimates of the groundwater dynamic parameters and of the available groundwater resources. To achieve these objectives, numerical tools are required to quantitatively model flow through porous saturated and unsaturated media. We have developed a general finite element (FE) model for underground water flow and specific algorithms for Ranney wells. Solutions for steady and unsteady conditions are obtained by using two basic models: global and local. The global model consists of 3D finite elements and 1D finite elements with the equivalent well permeability representing Ranney wells. The local models are generated around wells, using solutions for all quantities from 3D global model at a cylindrical surface which bounds the local model. The local model consists of a fine 3D FE mesh and 1D elements used to model each of the well screens. We developed a software for pre- and post-processing, Lizza, which can be used for easy modeling of complex engineering underground water flow problems with Ranney wells. The FE package PAK-P is used as the solver. This software can handle flow regions with general irregular boundaries. The flow region itself may be composed of layers of nonuniform soils having an arbitrary degree of local anisotropy. Flow can occur in the vertical plane, the horizontal plane, or in a three dimensional region exhibiting radial symmetry about the vertical axis. The water flow model includes constant or time-varying prescribed head and flux boundaries, as well as boundaries controlled by atmospheric conditions. At a soil surface, boundary conditions may change during the time evolution from prescribed flux to prescribed head type conditions (and vice versa). The model also include a seepage face boundary through which water leaves the saturated part of the flow domain, and free drainage boundary conditions. The results of modeling several real engineering projects (Belgrade Water Supply Center) are presented.

2014 ◽  
Vol 18 (suppl.1) ◽  
pp. 59-72 ◽  
Author(s):  
Hasan Nagiar ◽  
Tasko Maneski ◽  
Vesna Milosevic-Mitic ◽  
Branka Gacesa ◽  
Nina Andjelic

Membrane walls are very important structural parts of water-tube boiler construction. Based on their specific geometry, one special type of finite element was defined to help model the global boiler construction. That is the element of reduced orthotropic plate with two thicknesses and two elasticity matrixes, for membrane and bending load separately. A global model of the boiler construction showed that the high value of stress is concentrated in plates of the buckstay system in boiler corners. Validation of the new finite element was done on the local model of the part of membrane wall and buckstay. A very precise model of tubes and flanges was compared to the model formed on the element of a reduced orthotropic plate. Pressure and thermal loads were discussed. Obtained results indicated that the defined finite element was quite favorable in the design and reconstruction of the boiler substructures such as a buckstay system.


2006 ◽  
Vol 3 (3) ◽  
pp. 291-318
Author(s):  
L. Vandenbulcke ◽  
A. Barth ◽  
M. Rixen ◽  
A. Alvera-Azcárate ◽  
Z. Ben Bouallegue ◽  
...  

Abstract. Modern operational ocean forecasting systems routinely use data assimilation techniques in order to take observations into account in the hydrodynamic model. Moreover, as end users require higher and higher resolution predictions, especially in coastal zones, it is now common to run nested models, where the coastal model gets its open-sea boundary conditions from a low-resolution global model. This configuration is used in the ''Mediterranean Forecasting System: Towards environmental predictions'' (MFSTEP) project. A global model covering the whole Mediterranean Sea is run weekly, performing 1 week of hindcast and a 10-day forecast. Regional models, using different codes and covering different areas, then use this forecast to implement boundary conditions. Local models in turn use the regional model forecasts for their own boundary conditions. This nested system has proven to be a viable and efficient system to achieve high-resolution weekly forecasts. However, when observations are available in some coastal zone, it remains unclear whether it is better to assimilate them in the global or local model. We perform twin experiments and assimilate observations in the global or in the local model, or in both of them together. We show that, when interested in the local models forecast and provided the global model fields are approximately correct, the best results are obtained when assimilating observations in the local model.


2019 ◽  
Vol 8 (4) ◽  
pp. 6787-6792

Efficiency improvement that can be provided by the high-speed rotating equipment becomes a concern for designers nowadays. Since the high-speed rotating machinery was capable of rotating at very near to critical speed, the accurate estimation of critical speed needs to be considered. This paper investigated the effect of torsional element towards critical speed of high-speed rotating shaft system for pinned-pinned (P-P), clamped-free (C-F) and clamped-free (C-F) boundaries condition. The Nelson’s finite element model that considers the torsional effect was developed for formulating the finite element (FE) model. This FE model was used to derive Mathieu-Hill’s equation and then solved by applying the Bolotin’s theory. From the solution, the Campbell’s diagram of the high-speed shaft was plotted. It was found that torsional motion has significant effect on the critical speed for different boundary conditions. The difference between critical speed of 4DOF and 5DOF models can be as high as 6.91 %.


Author(s):  
Ajay Garg

Abstract Design and analysis of engineering components can be categorized under the theory of continuum mechanics, plates/shells or beams. Closed form solutions for determining deformations and stresses are available for simple structures with simple boundary conditions. In the cases of complex structures, boundary conditions and loads, analytical solutions are not readily available. Finite element analysis (FEA) can be performed to resolve the simulation barrier of these analytically indeterminate structures. Similar to analytical approach, FEA can simulate the components through solid, plate/shell or beam elements. Finite element analysis through 3-D solid elements is costly and may require time in weeks, which may not be at the disposal of an analyst. Axi-symmetric components and components with an infinite radius of curvature (flat surfaces), but with complex cross sections can be modeled by 2-D axi-symmetric and plate elements, respectively. Two dimensional finite elements require less time and hardware support than three-dimensional elements. Two development cases of successful application of 2-D finite elements instead of 3-D finite elements are discussed. Experimental and analytical verification of FEA results, and guidelines for checking finite element mesh discretization error are presented.


Author(s):  
Murilo Sartorato

The present study proposes a computational methodology to obtain the homogenized effective elastic properties of unidirectional fibrous composite materials by using the generalized finite-element method and penalization techniques to impose periodic boundary conditions on non-uniform polygonal unit cells. Each unit cell is described by a single polygonal finite element using Wachspress functions as base shape functions and different families of enrichment functions to account for the internal fiber influence on stresses and strains fields. The periodic boundary conditions are imposed using reflection laws between two parallel opposing faces using a Lagrange multiplier approach; this reflection law creates a distributed reaction force over the edges of the [Formula: see text]-gon from the direct application of a given deformation gradient, which simulates different macroscopic load cases on the macroscopic body the unit cell is part of. The methodology is validated through a comparison with results for similar unit cells found in the literature and its computational efficiency is compared to simple cases solved using a classic finite-element approach. This methodology showed computational advantages over the classic finite elements in both computational efficiency and total number of degrees of freedom for convergence and flexibility on the shape of the unit cell used. Finally, the methodology provides an efficient way to introduce non-circular fiber shapes and voids.


Author(s):  
Tong Y. Yi ◽  
Parviz E. Nikravesh

Abstract This paper presents a method for identifying the free-free modes of a structure by utilizing the vibration data of the same structure with boundary conditions. In modal formulations for flexible body dynamics, modal data are primary known quantities that are obtained either experimentally or analytically. The vibration measurements may be obtained for a flexible body that is constrained differently than its boundary conditions in a multibody system. For a flexible body model in a multibody system, depending upon the formulation used, we may need a set of free-free modal data or a set of constrained modal data. If a finite element model of the flexible body is available, its vibration data can be obtained analytically under any desired boundary conditions. However, if a finite element model is not available, the vibration data may be determined experimentally. Since experimentally measured vibration data are obtained for a flexible body supported by some form of boundary conditions, we may need to determine its free-free vibration data. The aim of this study is to extract, based on experimentally obtained vibration data, the necessary free-free frequencies and the associated modes for flexible bodies to be used in multibody formulations. The available vibration data may be obtained for a structure supported either by springs or by fixed boundary conditions. Furthermore, the available modes may be either a complete set; i.e., as many modes as the number of degrees of freedom of the associated FE model is available, or it can be an incomplete set.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Kyu-Sik Park ◽  
Taek-Ryong Seong ◽  
Myung-Hyun Noh

Hanger cables in suspension bridges are partly constrained by horizontal clamps. So, existing tension estimation methods based on a single cable model are prone to higher errors as the cable gets shorter, making it more sensitive to flexural rigidity. Therefore, inverse analysis and system identification methods based on finite element models are suggested recently. In this paper, the applicability of system identification methods is investigated using the hanger cables of Gwang-An bridge. The test results show that the inverse analysis and systemic identification methods based on finite element models are more reliable than the existing string theory and linear regression method for calculating the tension in terms of natural frequency errors. However, the estimation error of tension can be varied according to the accuracy of finite element model in model based methods. In particular, the boundary conditions affect the results more profoundly when the cable gets shorter. Therefore, it is important to identify the boundary conditions through experiment if it is possible. The FE model-based tension estimation method using system identification method can take various boundary conditions into account. Also, since it is not sensitive to the number of natural frequency inputs, the availability of this system is high.


2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Ifaz T. Haider ◽  
Michael Baggaley ◽  
W. Brent Edwards

Abstract Understanding the structural response of bone during locomotion may help understand the etiology of stress fracture. This can be done in a subject-specific manner using finite element (FE) modeling, but care is needed to ensure that modeling assumptions reflect the in vivo environment. Here, we explored the influence of loading and boundary conditions (BC), and compared predictions to previous in vivo measurements. Data were collected from a female participant who walked/ran on an instrumented treadmill while motion data were captured. Inverse dynamics of the leg (foot, shank, and thigh segments) was combined with a musculoskeletal (MSK) model to estimate muscle and joint contact forces. These forces were applied to an FE model of the tibia, generated from computed tomography (CT). Eight conditions varying loading/BCs were investigated. We found that modeling the fibula was necessary to predict realistic tibia bending. Applying joint moments from the MSK model to the FE model was also needed to predict torsional deformation. During walking, the most complex model predicted deformation of 0.5 deg posterior, 0.8 deg medial, and 1.4 deg internal rotation, comparable to in vivo measurements of 0.5–1 deg, 0.15–0.7 deg, and 0.75–2.2 deg, respectively. During running, predicted deformations of 0.3 deg posterior, 0.3 deg medial, and 0.5 deg internal rotation somewhat underestimated in vivo measures of 0.85–1.9 deg, 0.3–0.9 deg, 0.65–1.72 deg, respectively. Overall, these models may be sufficiently realistic to be used in future investigations of tibial stress fracture.


Sign in / Sign up

Export Citation Format

Share Document